基于有效场论的QCD相图研究

杜轶伦¹ 李程明² 史 潮³ 徐书生⁴ 严 妍⁵ 张 正⁶ 1(山东高等技术研究院 济南 250100)
2(郑州大学 物理学院(微电子学院) 郑州 450001)
3(南京航空航天大学 核科学与技术系 南京 210016)
4(南京邮电大学 理学院 南京 210023)
5(常州大学 微电子与控制工程学院 常州 213164)
6(南京大学 物理学院 南京 210093)

摘要 量子色动力学(Quantum Chromodynamics,QCD)相图是高能核物理领域研究的前沿热点。本文基于有效场论的方法,包括Nambu-Jona-Lasinio模型和Dyson-Schwinger方程等,介绍了近期QCD相图研究的多方面进展,包括利用高阶磁化率寻找相变信号,手征不平衡、有限体积和旋转等对相图的影响,以及QCD物态方程在致密星体中的应用。研究发现,重子数高阶涨落的理论结果与实验测量的质子数高阶矩可以较好地符合;手征不平衡、有限体积和旋转对手征凝聚和相图结构都有一定的影响;从有效场论的QCD物态方程出发,可以给出符合脉冲星观测的结果。

关键词 QCD相图,高阶涨落,手征不平衡,有限体积,旋转,致密星 中图分类号 O572.24⁺3,O571.6 DOI: 10.11889/j.0253-3219.2023.hjs.46.040009

Review of QCD phase diagram analysis using effective field theories

DU Yilun¹ LI Chengming² SHI Chao³ XU Shusheng⁴ YAN Yan⁵ ZHANG Zheng⁶

1(Shandong Institute of Advanced Technology, Jinan 250100, China)

2(School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China)

3(Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

4(School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)

5(School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China)

6(Department of Physics, Nanjing University, Nanjing 210093, China)

Abstract The quantum chromodynamics (QCD) phase diagram is of great interest to researchers in the field of high energy nuclear physics. We review the present research status of several aspects of this topic. This review includes the search for the phase transition mechanism resulting in high-order baryon number fluctuations, how chiral imbalance, finite volume, and under rotations affect the QCD diagram, and the applications of the equation of states of dense QCD matter in the study of compact stars. The Nambu–Jona-Lasinio model and Dyson-Schwinger equations approach are the most commonly used methods described in this review. It is found that the theoretical results of high-order baryon number fluctuations are in good agreement with the experimental data. The chiral imbalance, finite

Received date: 2023-01-13, revised date: 2023-03-03

泰山学者工程、国家自然科学基金青年项目(No.12005192, No.11905104, No.11905107)、常州大学科研专项基金(No.KYP2202487C)资助 第一作者:杜轶伦,男,1991年出生,2018年于南京大学获博士学位,研究领域为高能核物理,E-mail: yilun.du@iat.cn

收稿日期: 2023-01-13, 修回日期: 2023-03-03

Supported by the Taishan Scholars Program, Youth Program of National Natural Science Foundation of China (No. 12005192, No. 11905104, No. 11905107), Special Research Foundation of Changzhou University (No.KYP2202487C)

First author: DU Yilun, male, born in 1991, graduated from Nanjing University with a doctoral degree in 2018, focusing on high-energy nuclear physics, E-mail: yilun.du@iat.cn

volume, and rotation of quark-gluon plasma (QGP) have a quantitative impact on the chiral condensate and the QCD phase structure. In the study of compact stars, the theoretical results from equation of states of dense QCD matter agree well with pulsar observations. Further research will be required to form a complete understanding of the QCD phase diagram, particularly given the abundance of QGP.

Key words QCD phase diagram, High-order fluctuations, Chiral imbalance, Finite volume, Rotation, Compact stars

强相互作用的基本理论是量子色动力学 (Quantum Chromodynamics, QCD), 其具有渐近自 由、手征对称性自发破缺和色禁闭三个特性。在高 温高密的条件下,核物质被认为会从强子相转变为 夸克-胶子等离子体(Quark-gluon Plasma, QGP)相。 在这种新型物态中,夸克和胶子不再束缚在强子内 部,而是在更大尺度上形成色中性的高温高密物 质[1-3]。同时,手征对称性也会获得部分的恢复,表 现为夸克的有效质量大大减小[4-5]。美国布鲁克海 文国家实验室相对论重离子对撞机(Relativistic Heavy Ion Collider, RHIC)和欧洲核子中心大型强 子对撞机(Large Hadron Collider, LHC)的相对论重 离子碰撞实验表明,QGP是强耦合的有黏滞性的流 体[6-8],是目前人类已知的温度最高的物质和最完美 的流体[9-10]。在非对心碰撞中,实验可以产生已知的 最强磁场[11]和涡旋度最强的物质[12]。此外,低温有 限密条件下的QCD物质物态方程对于致密星体的 研究不可或缺。因此,对有限温有限密条件下核物 质相图结构和物态性质的理论研究具有十分重要的 物理意义。

目前,广泛用于研究QCD相图的方法有格点 QCD^[13-15]和有效场论方法,后者包括基于泛函路径 积分的Dyson-Schwinger方程组(DSEs)^[16-19]、基于有 效相互作用拉氏量的Nambu-Jona-Lasinio(NJL)模 型^[20-22]、Polyakov圈扩展的Nambu-Jona-Lasinio (PNJL)模型^[23-25]、手征微扰论^[26-28]和夸克-介子模 型^[29-31]等。本文将着重介绍DSE方法和NJL模型对 相图研究的最新进展。

在高温低密的条件下,格点QCD和许多有效场 论计算均认为,从强子相到QGP相的物态转变是一 个平滑过渡(crossover)^[13-26,29,31];而在低温高密的条 件下,格点QCD由于"符号问题"无法开展计算,大 多数有效场论的结果表明那里可能发生一级相 变^[16-26,29,31]。两者之间有一个临界终止点(Critical-End Point,CEP)。因此,实验上希望确定QCD相图 的结构和CEP的具体位置,如RHIC的能量扫描 (Beam Energy Scan,BES)项目正致力于测量不同碰 撞能量下守恒荷的高阶涨落,希望能从中分析获得 相变的信号^[32-34]。

理论上认为,QCD真空有着非平庸的拓扑构

型,可以根据其绕数(winding number)将真空分 类^[35]。在高温QGP中,非平庸的(绕数不为零的)胶 子场构型会在任意时空点被激发出来,它们会改变 附近真空的拓扑荷,并进而由手征反常导致夸克螺 旋度的翻转,从而产生手征不平衡性(手征荷),即左 手夸克和右手夸克的数量差别^[36-40]。研究表明,重 离子碰撞产生火球后,手征荷会迅速达到平衡并保 持一段相对较长的时间^[41-43]。为了更好地理解QCD 的相图结构,我们需要研究这种手征不平衡性带来 的影响。在实际研究中,人们引入了手征化学势作 为手征荷的共轭变量。需要指出的是,由于手征反 常,手征荷并不是一个守恒量,引入手征化学势是一 种近似处理方法。

现有绝大多数对于 QCD 相图的理论研究都是 热力学极限(系统体积无穷大)下的结果,而实际中 相对论重离子碰撞实验所产生的火球体积是有限 的。研究估算指出,在 Au-Au 和 Pb-Pb碰撞中,热化 后的系统体积在 50~250 fm³之间^[44]。此外,RHIC上 产生的 QGP 系统体积最小可低至 10 fm^{3[45]}。严格说 来,由于有限体积系统中关联长度不能达到无限大, 因此热力学极限下相变点附近的奇异行为将被抑 制,例如:原本发散的奇异点变为有限高的峰,而峰 的高、宽和位置都可能随着系统体积变化而改变。 对此,诸多文献使用有效场论方法研究了有限体积 效应对于热密 QCD 物质性质的影响^[46-52]。

在非对心重离子碰撞中产生的QGP的涡旋度 可达10²² s^{-1[12]},而致密星表面的转速也可以达到约 0.1倍光速^[53]。要更加真实地模拟重离子碰撞和致 密星的物态,有必要考虑旋转效应的影响。目前, QCD系统的旋转效应主要有两个受关注的方面:一 是旋转对QCD相图的影响^[54-72];二是旋转所引起的 输运现象^[73-81]。前者包括旋转对手征相变、解禁闭 相变、π凝聚相变的影响,后者则主要是手征涡旋效 应。本文将总结前者最新的进展。

实验室中相对论重离子碰撞产生的是高温有限 密核物质,而致密天体是低温高密的核物质。由于 "符号问题",格点QCD在此很难开展计算,因此特 别需要采用QCD有效场论的方法提供有限密核物 质的物态方程,这对于中子星的研究具有非常重要 的意义^[82-83]。反过来,天文观测到的中子星的质量- 半径关系、潮汐形变参数等信息也将对有限密QCD的研究提出约束^[82-99]。

1 有效场论方法简介

1.1 Nambu-Jona-Lasinio 模型

QCD的拉氏量密度为:

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} F^{a}_{\mu\nu} F^{\mu\nu}_{a} + \bar{\psi} (i\gamma \cdot D - M) \psi \qquad (1)$$

其中:规范场张量*F*^{*a*}_{*µ*}为:

$$F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g_s f_{abc} A^b_\mu A^c_\nu \tag{2}$$

 $M = \text{diag}(m_u, m_d, m_s, m_c, m_b, m_t) 是六味流夸克$ $质量矩阵, g_s 是强耦合常数。$

QCD 相图研究中通常只考虑两味或三味夸克的情形,不考虑 c、b、t 夸克,即 $N_f = 2$ 或 $N_f = 2+1$, $N_c = 3$ 。两味的 NJL 模型对夸克之间的相互作用做四费米子相互作用近似,且满足手征不变性,其拉氏量写作^[100-101]:

$$\mathcal{L}_{\text{NJL}} = \bar{\psi} (i\gamma \cdot \partial - m) \psi + g \Big[(\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5\tau\psi)^2 \Big] (3)$$

式中:u、d夸克的质量被认为相等且等于m、g是有效耦合常数; τ是味道空间的Pauli矩阵。NJL模型是不可重整的有效场论,因此,在计算中还需要引入 正规化方案,通常采用的方案有4种,包括非协变的 三维动量截断方案、协变的四维动量截断方案、 Pauli-Villars 正规化方案和固有时正规化方案^[88]。 其中:动量截断方案是对积分动量引入硬截断*A*,而 固有时正规化方案则是先对积分表达式进行 Schwinger参数化,再对参数(固有时)引入积分下 限,这相当于在动量空间引入软截断。在经典的 NJL模型中,一般假定m、g和正规化参数与系统的 温度和密度无关。

在NJL 模型的实际计算中,人们往往需要引入 平均场近似来处理相互作用项,通常只保留 $\langle \bar{\psi}\psi \rangle$ 和 $\langle \bar{\psi}\gamma^{0}\psi \rangle$ 的相关项,它们与夸克质量和化学势的修正 效应有关。这里 $\langle O \rangle$ 表示算符O在巨正则系综下的 平均值。在平均场近似下,两味夸克有效质量M满 足能隙方程:

$$M = m - 2gN_{\rm F} \langle \bar{\psi}\psi \rangle \tag{4}$$

$$\left\langle \bar{\psi}\psi\right\rangle = -M\frac{N_{\rm c}}{\pi^2}\int \frac{p^2}{E} \left(1 - n\left(p,\mu\right) - m\left(p,\mu\right)\right) \mathrm{d}p \quad (5)$$

其中:

$$n(p,\mu) = \frac{1}{1 + \exp[\beta(E-\mu)]}$$
$$m(p,\mu) = \frac{1}{1 + \exp[\beta(E+\mu)]}$$

三味的 NJL 模型除了四费米子相互作用外,还 需要包含六费米子相互作用,其拉氏量写作^[82,102-103]。 $\mathcal{L}_{\text{NJL}} = \bar{\psi}(i\gamma \cdot \partial - m)\psi + G\left[\left(\bar{\psi}\lambda_i\psi\right)^2 + \left(\bar{\psi}i\gamma_5\lambda_i\psi\right)^2\right] - K\left(\det\left[\bar{\psi}(1+\gamma^5)\psi\right] + \det\left[\bar{\psi}(1-\gamma^5)\psi\right]\right)$ (6)

其中:列矢量 $\psi = (u, d, s)$ 是三种味道、三种颜色的 夸克场,即 $N_f = 3, N_e = 3$ 。 $m = \text{diag}(m_u, m_d, m_s)$ 是 流夸克质量矩阵。 λ^a 是味道空间的Gell-Mann矩阵, $a=1,2,3,...,8,\lambda^0 = \sqrt{\frac{2}{3}} I$ 。第二项表示四点标量-赝 标量相互作用,它在手征U(3)_L \otimes U(3)_R变换下是 不变的,这里忽略了矢量-轴矢量相互作用。最后一 项表示六点相互作用,它破坏了轴U(1)_A对称性。 但是它在SU(3)_L \otimes SU(3)_R变换下是不变的。这 些四点和六点相互作用形式都是根据QCD的手征 对称性构造的。在平均场近似下,三味夸克有效质 量*M*满足能隙方程:

$$M_{i} = m_{i} - 4G \left\langle \bar{\psi}\psi \right\rangle_{i} + 2K \left\langle \bar{\psi}\psi \right\rangle_{k} \qquad (7)$$

对于NJL模型中的相互作用部分,人们可以做数学上等价的Fierz变换,考虑场算符的重排效应^[104]。本文仅讨论对四费米子相互作用部分作Fierz变换。对于两味NJL模型,Fierz变换后拉氏量为:

$$\mathcal{L}_{F} = \bar{\psi} (i\gamma \cdot \partial - m) \psi + \frac{G}{8N_{c}} [2(\bar{\psi}\psi)^{2} + 2(\bar{\psi}i\gamma_{5}\tau\psi)^{2} - 2(\bar{\psi}i\gamma_{y}\psi)^{2} - 2(\bar{\psi}i\gamma_{y}\psi)^{2} - 2(\bar{\psi}i\gamma_{y}\psi)^{2} - (\bar{\psi}\sigma^{\mu\nu}\tau\psi)^{2} - (\bar{\psi}\sigma^{\mu\nu}\tau\psi)^{2}](8)$$

$$\forall \mp \equiv \bar{\psi} \text{ NJL } \not{\mathbb{R}} \forall \varphi, \text{ Fierz } \bar{\varphi} \not{\mathbb{R}} \exists \Xi \not{\mathbb{L}} \exists \Im;$$

$$\mathcal{L}_{F} = \bar{\psi} (i\gamma \cdot \partial - m) \psi - \frac{G}{2} [(\bar{\psi}\gamma^{\mu}\lambda_{a}^{c}\psi)^{2} - (\bar{\psi}\gamma^{\mu}\gamma^{5}\lambda_{a}^{c}\psi)^{2}] - K (\det [\bar{\psi}(1 + \gamma^{5})\psi] + \det [\bar{\psi}(1 - \gamma^{5})\psi] \qquad (9)$$

式中: λ_a^c 是色空间的Gell-Mann矩阵。可以看到,除 了 $\langle \bar{\psi}\psi \rangle$,Fierz变换后还会出现 $\langle \bar{\psi}\psi \rangle$ 的相关项,因 此做平均场近似应该考虑拉氏量在Fierz变换所揭 示的各项对 $\langle \bar{\psi}\psi \rangle$ 和 $\langle \bar{\psi}\psi \rangle$ 隐藏贡献,传统的方法是 取拉氏量在Fierz变换前后的平均值。在文献[105] 中,作者采取了一个新的自洽的处理方式,即对NJL 模型在Fierz变换前后分别引入权重因子(1 - α)和 α ,并作线性组合, $\mathcal{L}_R = (1 - \alpha)\mathcal{L}_{NIL} + \alpha\mathcal{L}_F$ 。这事实 上提供了一个额外的自由度去考察相变研究中的可 能性。我们将在致密星的研究中用到这样的处理 方法。

系统的巨配分函数由下式给出:

$$\ln Z = \ln \left[Tr e^{-\beta (\mathcal{H} - \mu_i \mathcal{N}_i)} \right]$$
(10)

其中:β = 1/T。人们可以在此基础上获得系统的其 他热力学性质,包括高阶磁化率等。

1.2 Dyson-Schwinger方程方法

在有限温量子色动力学中,巨正则系综的配分 函数可以用泛函路径积分方法表示为:

$$Z = N' \int_{BC} D \left[\bar{\psi} \psi A_{\mu} \right] \cdot \exp\left(-\int_{0}^{\beta} d\tau \int dx^{3} \left[\mathcal{L}_{QCD} + \mu \bar{\psi} \gamma^{0} \psi \right] \right)$$
(11)

下标BC指代夸克和胶子场需满足的边界条件:

$$\psi(0,\vec{x}) = -\psi(\beta,\vec{x})$$

$$A_{\mu}(0,\vec{x}) = A_{\mu}(\beta,\vec{x})$$
(12)

一般地,人们可以采用关联函数计算相应的圈 图来求解配分函数,而关联函数本身也包含了诸多 的热力学信息,因而求解这些关联函数具有重要意 义。

有限温量子场论中的关联函数之间满足 Dyson-Schwinger 方程组,这些方程组可以通过泛函微商方法得到,因而包含了非微扰效应。其中,有限温下的完全夸克传播子所满足的 DS 方程形式为^[106-107]:

$$S^{-1}(\tilde{\omega}_{n}, \vec{p}; T, \mu) = S_{0}^{-1}(\tilde{\omega}_{n}, \vec{p}) + T \sum_{l=-\infty}^{\infty} \int \frac{d^{3}q}{(2\pi)^{3}} \times g^{2}D_{\mu\nu}(\Omega_{nl}, \vec{p} - \vec{q}; T, \mu) \frac{\lambda^{a}}{2} \gamma_{\mu}S(\tilde{\omega}_{l}, \vec{q}; T, \mu) \times \frac{\lambda^{a}}{2} \Gamma_{\nu}(\tilde{\omega}_{n}, \tilde{\omega}_{l}, \vec{p}, \vec{q}; T, \mu)$$
(13)

其中: $\Omega_{nl} = \tilde{\omega}_n - \tilde{\omega}_l, D_{\mu\nu}$ 是完全胶子传播子; Γ_v 是完 全的夸克胶子项角。由于夸克场所要满足的边界条 件,其松原频率只能取一系列分立值 $\tilde{\omega}_n = (2n + 1)\pi T + i\mu, n \in \mathbb{Z}$ 。严格说来,DS方程组本身不封 闭,因而无法自洽求解。实际中,人们往往通过引入 截断和模型来进行求解。例如,最常用的是彩虹截 断(即 $\Gamma_v = \gamma_v$)和 Maris-Tandy 胶子相互作用模 型^[108-109]。作为改进,人们引入更加复杂的截断方案 以及借鉴格点QCD对顶角和胶子传播子的模拟结 果^[110-113]。一般来说,超越彩虹近似会给手征相图带 来定量改进,但没有定性改变。为了求解方程(3), 人们对夸克传播子进行一般的旋量结构分解,其一 般形式为:

$$S(\tilde{\omega}_{n},\vec{p}) = i \vec{\gamma} \cdot \vec{p} \sigma_{1}(\tilde{\omega}_{n},\vec{p}^{2};T,\mu) + i\gamma_{4}\tilde{\omega}_{n}\sigma_{2}(\tilde{\omega}_{n},\vec{p}^{2};T,\mu) + \sigma_{3}(\tilde{\omega}_{n},\vec{p}^{2};T,\mu) + i \vec{\gamma} \cdot \vec{p}\gamma_{4}\sigma_{4}(\tilde{\omega}_{n},\vec{p}^{2};T,\mu)$$
(14)

将方程(14)代入(13),两边分别乘以 {*i*ŷ·*p*,*i*y₄ῶ_n, *I*₄,*i*ŷ·*p*y₄}后取迹,可以得到关于σ_i的 非线性方程组,最后通过数值计算进行求解。

DS方程也可以研究有限体积和手征不平衡对 QCD相图的影响,但此时相应的夸克传播子会具有 更多的旋量结构。例如,为了研究手征不平衡对于 QGP性质的影响,人们唯象地引入手征化学势来表 征短时间内近似守恒的手征荷,于是在式(11)中引 入 $\mu_s \bar{\psi} \gamma^0 \gamma^5 \psi$ 项。此轴矢项的引入使得夸克传播子获 得额外的旋量结构,其一般形式为^[114]:

 $S(\tilde{\omega}_n, \vec{p}; T, \mu, \mu_5) = i \vec{\gamma} \cdot \vec{p} \sigma_1' + i \gamma_4 \tilde{\omega}_n \sigma_2' + \sigma_3' +$

 $i\vec{\gamma}\cdot\vec{p}\gamma_4\sigma'_4 + (i\vec{\gamma}\cdot\vec{p}\sigma'_5 + i\gamma_4\tilde{\omega}_n\sigma'_6 + \sigma'_7 + i\vec{\gamma}\cdot\vec{p}\gamma_4\sigma'_8)\cdot\gamma_5$ (15) 其中:8个标量函数 σ'_i 可以用前述方法进行数值 求解。

此外,通过对夸克和胶子场在空间方向取一定 的边界条件,DS方程可以研究相应的有限体积效 应。例如,在一个边长为L的立方体中,选取边界 条件^[106,115]:

$$\psi(\tau, 0, 0, 0) = -\psi(\tau, L, 0, 0)$$

$$A_{\mu}(\tau, 0, 0, 0) = A_{\mu}(\tau, L, 0, 0)$$
(16)

其中:已将空间方向矢量分量明显写出,注意空间三 个方向等价。此时夸克的动量变为离散值 $q_x \rightarrow (2l_x + 1)\pi/L$,胶子则有 $q_x \rightarrow 2l_x\pi/L$,而方程 (13)中的动量积分变为离散求和:

$$\int \frac{\mathrm{d}^3 q}{(2\pi)^3} \to \frac{1}{L^3} \sum_{l_z = -\infty}^{\infty} \sum_{l_y = -\infty}^{\infty} \sum_{l_z = -\infty}^{\infty}$$
(17)

此时有限温有限化学势下的夸克传播子的一般展开 形式为:

$$S(\tilde{\omega}_{n}, \vec{p}_{n}; T, \mu, \mu_{5}) = i \vec{\gamma} \cdot \vec{p}_{n} \sigma_{1}(\tilde{\omega}_{n}, \vec{p}_{n}^{2}; T, \mu, \mu_{5}) + i\gamma_{4}\tilde{\omega}_{n} \sigma_{2}(\tilde{\omega}_{n}, \vec{p}_{n}^{2}; T, \mu, \mu_{5}) + \sigma_{3}(\tilde{\omega}_{n}, \vec{p}_{n}^{2}; T, \mu, \mu_{5}) + i \vec{\gamma} \cdot \vec{p}_{n} \gamma_{4} \sigma_{4}(\tilde{\omega}_{n}, \vec{p}_{n}^{2}; T, \mu, \mu_{5}),$$

$$(18)$$

其 中 : $\vec{p}_n = ((2n_x + 1)\pi/L, (2n_y + 1)\pi/L, (2n_z + 1)\pi/L)_{\circ}$

2 利用守恒荷高阶涨落寻找临界点

确定 QCD 的相图结构,尤其是寻找临界终止点 是有限温有限密 QCD 研究中最重要的目标之一,理 论和实验在该方向上都做了相当多的探索。相变理 论认为,守恒荷的涨落对 QCD 相图 CEP 附近的临界 行为非常敏感,而实验上可以通过逐事例的分析来 获得相关的粒子多重数分布的涨落。目前,人们基 于 NJL 模型^[116-118]、PNJL 模型^[119-121]、Dyson-Schwinger 方程^[122-124]、手征微扰论^[125]、准粒子模 型^[126]和夸克介子模型^[127]进行了相关的计算,并和实 验数据进行了比较。

考虑热平衡态下QCD的巨正则系综,系统的压

强与配分函数有如下关系:

$$\frac{P}{T^4} = \frac{1}{VT^3} \ln \left[Z \left(V, T, \mu_{\rm B}, \mu_{\rm Q}, \mu_{\rm S} \right) \right]$$
(19)

守恒荷(重子数 B、电荷数 Q、奇异数 S)的高阶 磁化率可以通过压强 P 对重子数 B、电荷数 Q、奇异 数 S等守恒荷的化学势的高阶偏导数定义为:

$$\chi_{ijk}^{\text{BQS}} = \frac{\partial^{i+j+k} \left[P/T^4 \right]}{\partial \left(\mu_{\text{B}}/T \right)^i \partial \left(\mu_{\text{Q}}/T \right)^j \partial \left(\mu_{\text{S}}/T \right)^k}$$
(20)

而 实 验 可 测 的 多 重 数 分 布 的 累 积 量 (Cumulants)可以和高阶磁化率按如下方式关联 起来:

$$C_{ijk}^{\text{BQS}} = \frac{\partial^{i+j+k} \ln \left[Z \left(V, T, \mu_{\text{B}}, \mu_{\text{Q}}, \mu_{\text{S}} \right) \right]}{\partial \left(\mu_{\text{B}}/T \right)^{i} \partial \left(\mu_{\text{Q}}/T \right)^{j} \partial \left(\mu_{\text{S}}/T \right)^{k}} = V T^{3} \chi_{ijk}^{\text{BQS}}$$
(21)

对于守恒荷*N*的任意分布,我们可以定义其高 斯宽度σ为:

$$\sigma^2 = \left\langle (N - \langle N \rangle)^2 \right\rangle \tag{22}$$

而其高阶涨落的偏度 S(Skewness) 和峰度 κ (Kurtosis) 定义为:

$$S\sigma = R_{32} = m_1 = \frac{C_3}{C_2} = \frac{\chi_3}{\chi_2}$$
 (23)

$$\kappa \sigma^2 = R_{42} = m_2 = \frac{C_4}{C_2} = \frac{\chi_4}{\chi_2}$$
 (24)

这里列出了不同文献中采用的符号, C_n 和 χ_n 是 单一守恒荷的n阶累积量和磁化率的简单表示。这 些量约去了系统的体积效应,是归一化的物理量,利 用它们可以更好地进行理论计算和实验数据的 比较。

对于三味QCD系统,重子数B、电荷数Q、奇异数S等守恒荷的化学势和u,d,s夸克的化学势的关系为:

$$\mu_{\rm u} = \frac{1}{3}\,\mu_{\rm B} + \frac{2}{3}\,\mu_{\rm Q} \tag{25}$$

$$\mu_{\rm d} = \frac{1}{3}\,\mu_{\rm B} - \frac{1}{3}\,\mu_{\rm Q} \tag{26}$$

$$\mu_{\rm s} = \frac{1}{3}\,\mu_{\rm B} - \frac{1}{3}\,\mu_{\rm Q} - \mu_{\rm S} \tag{27}$$

其中:式(27)两边用大小写区分s夸克的化学势和 奇异数S的化学势。人们可以利用式(25~27)进行 化学势的转换,计算守恒荷的高阶涨落,具体可以参 见文献[116]。

实验上已经测量了净质子数、净电荷数、净*K*介 子数和净*A*重子数的涨落对碰撞能量的依赖^[128-131]。 通过将原子核的碰撞能量从高值调整到低值,可以 改变高能核碰撞中产生的热密QCD物质的温度和 重子化学势。需要指出的是,实验上并不能直接测 量重子数涨落,这主要是因为不带电的重子,例如中

子,无法被大部分的探测器观测到。幸运的是,文献 [132-133]论证了在同位旋对称下,质子数涨落和重 子数涨落可以相互表达。文献[134]论证了在OCD 临界点附近,净质子数涨落可以作为重子数涨落的 近似替代。人们也从净质子数的 $\kappa\sigma^2$ 随碰撞能量的 依赖中观察到了非单调行为,这被认为是可能的临 界点信号[32-34]。电荷数主要由π介子主导,但理论认 为π介子与临界点附近涨落的耦合弱于质子。此 外,由于共振态衰变效应、统计误差等因素,人们可 能无法从电荷数涨落中观察到较强的临界点信 号^[33,135]。在奇异数涨落中,相比于A重子,K介子占 主导地位,其涨落可以作为奇异数涨落的一个近似 替代。然而在目前较少的实验数据统计下,人们还 无法从K介子数高阶涨落之比随能量的依赖中确认 其中的非单调性行为[131]。基于上述原因,在当前的 许多理论研究中,人们将重子数涨落和实验上测量 的净质子数涨落进行比较,这将是本节介绍的重点 内容。

理论计算的第一步考虑的往往是热力学极限下 的无限大系统,忽略了系统的体积效应和形状。由 于对心碰撞(0%~5%中心度)的对称性较高等原因, 人们很自然地选择将理论计算结果与对心碰撞的实 验数据进行比较。通过理论计算得到有限温有限密 下高阶重子数涨落后,为了和实验测量的净质子数 涨落对碰撞能量的依赖关系做比较,我们还需要通 过选取或拟合实验数据来确定不同碰撞能量下的系 统在化学 freeze-out 时的温度和化学势[136-137]。图1 (a)是NJL模型给出的µ_B-T相图和三条作者猜想 的系统在不同碰撞能量下 freeze-out 点组成的曲 线^[116]。这些猜想的 freeze-out 曲线在低密区域和平 滑过渡线重合,在高密区域通常都要低于平滑过渡 线或一级相变线。系统在不同碰撞能量 $\sqrt{s_{NN}}$ 下 freeze-out时的温度和重子化学势 $\mu_{\rm B}$ 的关系可以由 实验数据拟合给出,并一般以如下形式参 数化[138-139]:

$$\mu_{\rm B} = \frac{a}{1 + b\sqrt{s_{\rm NN}}} \tag{28}$$

在文献[116]中选取了参数a = 1.308 GeV, b = 0.273 GeV⁻¹在NJL模型中开展了计算。

图1(b)、(c)展示了NJL模型给出的沿着这三条 猜想的 freeze-out 曲线获得的高阶重子数磁化率比 值 $m_1(B)$ 、 $m_2(B)$ 与碰撞能量 $\sqrt{s_{NN}}$ 之间的关系。图2 和图3中的绿色星形数据点给出了RHIC的STAR 实验组束能量扫描项目测量的Au-Au碰撞在不同能 量下0%~5%中心度的净质子数的各阶涨落。我们

图1 (a) 最右曲线是NJL模型给出的相图,其中虚线表示平滑过渡,符号×表示一级相变,连接处为CEP;其他三条线是假设的 freeze-out曲线,(b、c) 沿着图(a)三条 freeze-out曲线获得的高阶磁化率比值m₁(B)、m₂(B)与碰撞能量√s_{NN}之间的关系^[116]
 Fig.1 (a) The rightmost curve represents the phase diagram derived using the Nambu–Jona-Lasinio (NJL) model, the dashed line of the rightmost curve denotes the crossover, the symbol × denotes the first-order phase transition, and the junction where the dashed line and the crosses meet is a critical endpoint (CEP). The other three lines in the left panel are the hypothetical freeze-out curves. (b, c) The ratios of the high-order susceptibilities m₁(B) and m₂(B) compared to the collision energy √s_{NN} obtained along the three freeze-out curves in (a)^[116]

图2 STAR 测量的 Au+Au 碰撞中心度为 0%~5%的 R_{32}^{p} - $\sqrt{s_{NN}}$ 的实验结果以及基于重整化群的手征微扰论的 R_{32}^{p} - $\sqrt{s_{NN}}$ 理论结果⁽¹²⁵⁾

Fig.2 Experimental result from measuring R_{32}^p , relative to the collision energy, $\sqrt{s_{NN}}$ measured by the STAR experiment for an Au+Au collision with 0%~5% centrality, and the theoretical results of R_{32}^p relative to $\sqrt{s_{NN}}$ from the renormalization-groupbased chiral perturbation theory^[125]

可以看到,在高能区域NJL模型的结果符合实验数据的基本趋势, $m_1(B)$ (即 $S\sigma$ 或 R_{32}^{B})正定且单调下降; $m_2(B)$ (即 $\kappa\sigma^2$ 或 R_{42}^{B})正定且单调上升,但是其值远小于1,与实验数据相差较大。在低能区域,三条曲线不再重合, $m_1(B)$ 和 $m_2(B)$ 均给出了不同的行为,并且没有曲线给出如图2绿色星形数据点所示的质子数 R_{32}^{P} 在 $\sqrt{s_{NN}}$ 为7.7~14.5 GeV区间的平台特征;同时,三条曲线均给出了 $m_2(B)$ 先下降再上升的特征,但下降时 $m_2(B) < 1$ 所对应的碰撞能量位置(小于 5 GeV)均低于图3中相应的实验值(约10 GeV)。总的来说,NJL模型可以给出实验数据的定性行为。

另一方面,在一个包含了矢量相互作用的NJL 模型计算中,相图里没有CEP和一级相变,却同样

图3 STAR 测量的 Au+Au 碰撞中心度为 0%~5% 的 $R_{n2}^{o} - \sqrt{s_{NN}}$ 的实验结果以及基于重整化群的手征微扰论的 $R_{n2}^{B} - \sqrt{s_{NN}}$ 计算结果^[125]

Fig.3 Experimental result from measuring R_{n2}^{p} relative to the collision energy $\sqrt{s_{NN}}$ measured by the STAR experiment for Au+Au collisions with 0%~5% centrality, and the theoretical results of R_{n2}^{B} relative to $\sqrt{s_{NN}}$ from the renormalization-groupbased chiral perturbation theory^[125]

可以得到了 $\kappa\sigma^2 - \sqrt{s_{NN}}$ 曲线的非单调行为^[117]。这是 一个 $\kappa\sigma^2 - \sqrt{s_{NN}}$ 曲线的非单调行为不是来自于CEP 的例证。

基于手征微扰论和重整化群的理论计算对 R_{32}^{s} 和 $R_{42}^{s}较好地符合了零密格点QCD和有限密STAR$ 实验的结果。有限密的STAR实验结果如图2和图3中灰色和红色曲线(对应不同的freeze-out曲线)所 $示,且该方法给出了更高阶的<math>R_{62}^{s}$ 和 R_{32}^{s} 的预言^[125]。 然而,很好地符合格点QCD和STAR实验关于 R_{32}^{s} 和 R_{42}^{s} 的结果还不能直接帮助我们理解QCD的相图结 构,尤其是确定临界点的位置。在该工作中,拟合 STAR实验数据得到的freeze-out曲线离该理论所给 出的临界终止点的位置较远,作者认为 $\kappa\sigma^2 - \sqrt{s_{NN}}$ 曲 线的非单调行为起源于平滑过渡区域在大化学势处 变得狭窄,而不是临界点。

文献[121]探讨了 PNJL 模型在零密和有限密情 形下 R_{42}^{8} 的计算结果。通过与 NJL 模型以及格点 QCD 在零化学势下的 R_{42}^{9} 结果的对比,强调了胶子 动力学对 R_{42}^{9} 大小的重要贡献。此外,还通过假设不 同的 freeze-out 曲线探讨了 STAR 实验测量的 R_{42}^{9} - $\sqrt{s_{NN}}$ 关系所包含的信号,认为其中峰结构的出现是 靠近 CEP 的表现,而凹陷出现的原因则更加复杂, 它和 freeze-out 曲线与手征以及解禁闭相变线的相 对位置有关,但不能作为CEP存在的证据。

总结来看,目前NJL模型、PNJL模型和手征微 扰论的结果都支持 $\kappa\sigma^2 - \sqrt{s_{NN}}$ 曲线的非单调行为不 是来自于CEP。未来人们需要进一步地积累实验数 据,并考虑其他更敏感的观测量来探究临界点的 位置。

3 现实重离子碰撞条件下QCD相图的研究

3.1 手征不平衡效应

在相对论重离子碰撞实验中产生的高温夸克-胶子等离子体状态下,右手手征夸克数与左手手征 夸克数可以不相等,通常可以使用两者的密度之差 来表示手征不平衡性,即:

$$n_5 = n_R - n_L \tag{29}$$

在非对心碰撞条件下,伴随着强磁场(eB可达 10¹⁸G^[11]),手征不平衡会导致手征磁效应,即产生沿 着磁场方向的感应电流^[140-141]。

手征不平衡在重离子碰撞过程中持续的时间与 重离子碰撞产生的火球的持续时间相当,因此,在手 征不平衡状态下,可以认为手征荷密度 $(n_5 = \bar{\psi}\gamma_4\gamma_5\psi)$ 是一个近似的守恒量。根据巨正则系 综理论,可以引入相应的手征化学势 μ_s ,并在拉格朗 日密度中加入 $\mu_s \bar{\psi} \gamma_4 \gamma_s \psi$ 项来研究手征不平衡的 QCD系统的热力学性质^[140]。Fukushima 与Ruggieri 首次使用 PNJL 模型对 $\mu_s \neq 0$ 的 QCD 系统进行研 究^[141]。计算结果表明,随着 μ_s 从零开始增加,在*T*- μ 平面内的 CEP 逐渐向*T*轴移动。当 $\mu_s =$ $\Lambda_s^c \sim 400$ MeV时,CEP 移动到了*T*轴上,通常将*T*- μ_s 平面内的 CEP 称作 CEP_s。使用线性 σ 模型与夸克-介子模型也得到了类似的结论^[142-143]。因此,文献 [143]提出,可以使用 CEP_s与*T*- μ 平面内的 CEP 建 立映射关系,从而通过 CEP_s的位置来推测 CEP 的 位置。

然而,文献[144]中,格点 QCD的研究发现*T*μ₅平面内并不存在手征相变点,也没有 CEP₅。这与 前面所提到的几种模型研究的结果都不同。对此, 文献[145-147]在 DSE 框架下系统研究了有限手征 化学势 QCD 系统的手征相图,包括 CEP 的位置。我 们采用了如下三种有效胶子相互作用模型:

模型I:可分离模型:

$$g^{2}D_{\mu\nu}^{\text{eff}}(\tilde{p}_{k} - \tilde{q}_{n}, \mu_{5}) = \delta_{\mu\nu}[D_{0}f_{0}(p_{k}^{2})f_{0}(q_{n}^{2}) + D_{1}f_{1}(p_{k}^{2})p_{k} \cdot q_{n}f_{1}(q_{n}^{2})]$$
(30)

其中: $\tilde{p}_{k} = (\vec{p}, \tilde{\omega}_{k}), \tilde{q}_{n} = (\vec{q}, \tilde{\omega}_{n}), \vec{p}, \vec{q}$ 分别是夸克-胶 子顶点上夸克-反夸克的三维动量: $f_{0}(q_{n}^{2}) = \exp(-q_{n}^{2}/\Lambda_{0}^{2}), f_{1}(q_{n}^{2}) = \exp(-q_{n}^{2}/\Lambda_{1}^{2})$ 。其中,模型参数分别 取 为 $\Lambda_{0} = 0.638 \text{ GeV}, \Lambda_{1} = 1.21\Lambda_{0}, D_{0}\Lambda_{0}^{2} = 260,$ $D_{1}\Lambda_{1}^{4} = 130,$ 流夸克质量取为 $m = 5.3 \text{ MeV}^{[145,148]}$ 。

模型II:Maris-Tandy(MT)模型:

$$g^{2}D_{\mu\nu}^{\rm eff}(k) = T_{\mu\nu}(k)D(k^{2})$$
(31)

$$D(k^{2}) = D_{0} \frac{4\pi^{2}}{\sigma^{6}} k^{2} e^{-\frac{k^{2}}{\sigma^{2}}}$$
(32)

其中: $T_{\mu\nu}(k) = \delta_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2}$ 是横向的投影算符。模型 参数通过拟合 π 介子质量($m_{\pi} = 138$ MeV)与衰变常 数 ($f_{\pi} = 131$ MeV) 来 确 定 , $D_0 = 0.93$ GeV², $\sigma = 0.4$ GeV,流夸克质量m = 5 MeV^[146,149]。

模型III:Qin-Chang(QC)模型:

$$g^{2}D_{\mu\nu}(k) = T_{\mu\nu}(k) \frac{8\pi^{2}}{\sigma^{4}} D e^{-\frac{k^{2}}{\sigma^{2}}}$$
(33)

其中:模型参数 $D = 1 \text{ GeV}^2$, $\sigma = 0.6 \text{ GeV}^{[150]}$ 。

在这三种有效相互作用模型中,都只保留了红外部分。

在 $\mu_s = 0$, $\mu_B = 0$ 的情况下, 与 PNJL 模型、夸克-介子模型、线性σ模型以及格点 QCD 一样, 随着温度 T的增加, 不存在相变点。而当 $\mu_s \neq 0$ 时, 我们仍然计算 T - μ平面的相图, 模型 I 的结果如图4 所示。 可以看出,随着 μ_s 的增加,CEP先是向T轴靠近,当 $\mu_s = 190 \text{ MeV FI CEP 开始远离T轴。也就是说,无$ $论<math>\mu_s$ 取何值,在 $\mu = 0$ 时都不会出现手征相变。这与 前面所提到的有效模型研究的结论相反,与格点 QCD的结论一致。文献[146-147]分别采用了在强 子物理中广泛使用的模型II和模型III研究CEP_s的 存在性问题。如图5所示,在 $\mu = 0$ 时,热密QCD系 统不存在相变点,两种模型给出的CEP随 μ_s 的变化 曲线定性一致。在文献[151]中,研究了DSEs的T- μ_s 平面和 $\mu - \mu_s$ 平面的CEP随模型参数的影响,结 果表明,不存在CEP_s的结论不会随着模型参数的改 变而改变。我们在DSEs框架下的三种模型研究取 得一致结果,并且与格点QCD的结果一致。

图4 可分离模型的手征相图以及 CEP 随 μ_5 的变化^[145] Fig.4 The chiral phase diagram from the separable model and the variation of the critical endpoint (CEP) relative to μ_5 values^[145]

图5 MT模型与QC模型CEP随着 μ_5 的变化,空心圆与三角 形从右向左分别对应 $\mu_5 = (0,0.1,0.2,0.3,0.4,0.6,0.8)$ GeV^[147] **Fig.5** The variation of the critical endpoint (CEP) relative to μ_5 calculated via the MT model and QC model, where the hollow circles and triangles from right to left correspond to $\mu_5 = (0,0.1,0.2,0.3,0.4,0.6,0.8)$ GeV, respectively^[147]

关于CEP。是否存在,NJL模型、PNJL模型的计 算结果与格点QCD、DSEs的结果存在分歧。由于 NJL模型是不可重整化的,模型的正规化方案与截 断参数可能对结果产生定性影响。文献[152]讨论 了模型的不同截断方案对手征凝聚的影响,以及其 对CEP。存在性的影响。研究表明,NJL模型的截断 方案会导致有限手征化学势下的相图发生定性变 化,其主要差别来自于硬截断与软截断在温度依赖 项的贡献。当采用软截断时,包含更多大动量夸克 模式的贡献,结果与格点QCD和DSE的结果一致。 文献[151]研究了PNJL模型中CEP的位置随耦合 常数与截断的变化,结果如图6所示。发现,当耦合 常数不剧烈变化的情况下,存在一个临界硬截断 Λ_c , 当截断 $\Lambda < \Lambda_c$ 时,不存在CEP₅。当 $\Lambda \approx \Lambda_c$ 时的计算 将包含更多的大动量夸克模式,这部分将显著改变 CEP在 $\mu - \mu_5$ 平面上投影的走向,此时的结果与格点 QCD与DSE不符。

图6 PNJL模型下温度依赖项截断参数对CEP在μ-μ₅平面 上投影的影响^[151]

Fig.6 Influence of the truncation parameter on temperaturedependent term of the critical endpoint (CEP) in terms of its projection onto the μ - μ_5 plane within the Polyakov-loopextended Nambu–Jona-Lasinio (PNJL) model^[151]

3.2 有限体积效应

随着碰撞参数的变化,非对心重离子碰撞中会 产生体积较小的QGP,且近年来研究表明,p-Pb碰 撞所产生的小体积系统也表现出部分QGP性 质^[153-154],因此,有必要研究小体积效应对QCD相图 的影响。

在热力学极限下,有限温场论中费米子场和玻 色子场在温度上分别取反周期边界条件和周期边界 条件,但在空间方向上没有限定。此时,通过对夸克 和胶子场在空间方向引入边界条件,可以研究有限 体积效应。例如,为了方便计算,可以选取三维立方 体进行研究,并对费米子场和玻色子场在空间上分 别选取反周期边界条件和周期边界条件,此时无穷 体积下的连续动量变为一系列离散频率。据此,文 献[155]采用DS方程方法,计算了有限体积效应对 于有限温QCD手征相图的影响,发现夸克手征凝聚 随着系统体积减小而减小,且平滑转变区域的手征 磁化率-温度曲线的峰值随之向低温区移动,这表明 小体积有抑制手征对称破缺效应的作用,并使得手 征平滑过渡区域的赝临界温度减小。随后,文献 [156]将计算推广至有限温有限密情形,发现小体积 效应会造成 CEP 的位置向更低温度和更高化学势

区域转移,目平滑过渡曲线的曲率也相应减小,如图 7所示,从左至右5个点分别代表边长为无穷大、 3 fm、2.5 fm、2.4 fm 和 2.3 fm 的立方体中 CEP 模拟 结果,图中的曲线是手征转变的平滑过渡曲线,其 中:虚线、点虚线和点线分别对应于边长为3 fm、 2.5 fm 和2 fm 的情形,当边长降至2 fm 时,相应的平 滑过渡曲线延伸入数值计算较困难的低温阴影区 域。此外,从图7还可以看出,当系统体积大于 (3 fm)³时,体系的热力学量趋于无穷大体积的结果。 同时,文献[156]发现当系统体积大于(3fm)³时,体 系的热力学量趋于无穷大体积的结果。此后,文献 [157]在DS方程方法框架下,将MIT边界条件和准 粒子近似结合起来,使夸克数密度完全约束于球形 火球内,发现小体积效应在火球半径为5 fm 左右时 变得明显,与实际重离子碰撞中的火球体积接近。 之后,文献[158]超越彩虹近似,引入耦合的夸克和 胶子DS方程,结果与文献[155-156]定性相符,但小 体积效应会在(5 fm)³以下时体现出来。最近,文献 [159]采用DS方程方法研究发现,虽然CEP附近的 重子数涨落依赖体积效应,但其比值则依赖很小,该 结果与夸克-介子模型[100]的结果并不一致,有待实 验检验。

图7 采用彩虹近似的DS方程给出的CEP位置随体积的移动^[150]

与此同时,人们研究了小体积效应对重离子碰 撞中的介子性质的影响。对于重介子,文献[161]将 QGP火球近似处理为一个不可穿透的球形腔,采用 随温度变化的重夸克相互作用势,求解了有限体积 下的薛定谔方程,研究其中重夸克偶素(主要是J/ψ 和Y及其低激发态)束缚能随温度和球体体积的变 化。研究发现随着火球体积的减小,重夸克偶素融 解温度(定义为束缚能降为零的温度)会随之降低, 如图8所示。此外,体积更大的介子对系统体积更 加敏感,例如基态介子比激发态介子、J/ψ介子比Y 介子对于火球的小体积效应更加敏感。另一方面, 文献[162]采用PNJL模型研究了有限体积效应对轻 介子π和σ介子的影响,发现随着系统体积减小,在 同样的温度和化学势下,π和σ介子的质量趋近相 同,这是小体积下动力学手征破缺效应减弱的又一 体现。

Fig.8 The relationship between the meson melting temperature in a hot spherical cavity and the cavity radius^[161]. The *y*-axis represents the binding energy of charm and anticharm quarks, whose vanishing meets the criteria for the meson melting temperature.

3.3 旋转效应

考虑到在非对心重离子碰撞产生的QGP的极高涡旋度和一些致密星的极高转速,研究旋转效应对QCD相图的影响具有现实的意义。

目前研究发现,在手征相变中,旋转会压低手征 凝聚,促进手征对称性恢复,降低手征相变温 度^[54,57,71]。这里,我们定性地解释这一效应。旋转参 考系是一种非惯性系,其中的物理量将会受到非惯 性修正。在角速度为 Ω 的旋转系中,角动量为J的 物体的能量将额外获得一项 – $\Omega \cdot J$ 的修正^[54-55,57] (在非相对论和相对论情形下都是如此)。因此,在 旋转系中,粒子的角动量将倾向平行于旋转方向排 列。手征凝聚 $\langle \bar{y}\psi \rangle$ 的角动量为0,粒子角动量沿同 一方向排列不利于其形成,因此,旋转会压低手征凝 聚,从而促进手征恢复。

在旋转对相变影响的研究中,人们通常考虑刚 性的旋转,即系统各处的角速度相同。在此情形下, 需要避免超光速的问题。例如,文献[54]考虑了无 穷大空间的旋转体系中的手征相变,其结果表明,在 零温零化学势时,快速旋转可以引发手征相变。随 后,文献[55-57,71]用边界条件将系统限制在光速 面以内,发现零温零化学势时旋转对于相变没有任 何影响,这一结论称为"冷真空不能旋转"^[55]。该结 论有着很深刻的原因,涉及旋转真空和非旋转真空 的关系^[55.57]。文献[163-165]表明,只要把系统限制 在光速面内,旋转真空就与非旋转真空相同。也即, 在旋转观者看来,非旋转真空中的反粒子不会变成 粒子,粒子也不会变成反粒子(即不会类似安鲁效 应^[166-167]),这是"冷真空不能旋转"的原因。

下面,以两味NJL模型为例,展示如何在平均场 近似下将旋转效应考虑进去^[57]。首先,需要求解旋 转系的自由Dirac方程,得到本征能量和模式解。旋 转系自由Dirac方程为:

$$\left[i\gamma^{\mu}\left(\partial_{\mu}+\Gamma_{\mu}\right)-M\right]\psi=0\tag{34}$$

式中: Γ_{μ} 是弯曲坐标系中的自旋联络;M为粒子质量。 设解的形式为 $\psi(x) = u(x)e^{-it}$,可得本征 方程:

$$\tilde{H}u(x) = \tilde{E}u(x) \tag{35}$$

$$\tilde{H} = -i\gamma^{\hat{0}}\gamma^{\hat{i}}\partial_{i} + \gamma^{\hat{0}}M - \Omega J_{z} = H - \Omega J_{z} \qquad (36)$$

式中:*H*具有和惯性系自由哈密顿相同的形式;*J*_z是 *z*方向角动量算符(我们设转轴为*z*轴)。对本征方 程的求解一般变换到柱坐标或球坐标,如在柱坐标 下,本征态由一组量子数*j* = (E_j , k_j , m_j , λ_j)标记,本 征能量:

$$\tilde{E}_j = E_j - \Omega\left(m_j + \frac{1}{2}\right) \tag{37}$$

$$E_{j} = \pm \sqrt{q_{j}^{2} + k_{j}^{2} + M^{2}}$$
(38)

式中: q_i 是横向动量: k_i 是纵向动量。在无穷大空间,它们都是连续取值的。这里 $E 与 \tilde{E}$ 分别是非旋转真空和旋转真空的本征能量。为了把系统限制在 光速面内,需要施加边界条件,这会使得横向动量 q_i 离散化。如施加谱(spectral)边界条件:

$$\psi_m^1|_{r=R} = \psi_m^3|_{r=R} = 0, \quad m + \frac{1}{2} > 0$$
 (39)

$$\psi_m^2|_{r=R} = \psi_m^4|_{r=R} = 0, \quad m + \frac{1}{2} < 0$$
 (40)

式中: ψ_m^i 表示被m标记的波函数的第i个分量;R为 半径且满足 $\Omega R < 1$ 。此时,横向动量q被离散化为:

$$q_{ml}R = \begin{cases} \zeta_{m,l}, & m + \frac{1}{2} > 0\\ \zeta_{-m-1,l}, & m + \frac{1}{2} < 0 \end{cases}$$
(41)

式中: $\xi_{m,l}$ 是贝塞尔函数 J_m 的第l个非零根。这样q有最小取值,这将使得 $E = \tilde{E}$ 总是同号的,从而旋转真空与非旋转真空相同。

得到了旋转系自由Dirac方程的模式解之后,我 们用它来计算手征凝聚〈ψψ〉。这可以通过先计算 传播子得到^[71],也可以把场算子用模式解展开直接 计算^[57]。由于旋转,手征凝聚不再是均匀的,而与空 间位置有关。将凝聚表达式代入NJL能隙方程中自 洽求解,就可以得到夸克有效质量,它也是一个随位 置变化的函数。在自洽求解过程中,人们通常使用 局域密度近似,即把r处的凝聚表达式中的有效质量用r处的有效质量代入,这在质量随r变化比较缓慢时是合理的。值得指出,在上面的处理中,有限体积效应已经被自然地考虑在内了。

图9、10给出了有旋转时,有效质量随温度和化 学势的变化曲线,可以看到,旋转确实压低了手征凝 聚,使得相变温度和化学势降低。在相变点附近,旋 转的效应比较显著,而在远离相变点的区间,旋转效 应不显著。在*QR* < 0.1时,旋转对相变影响很小,因 此在研究致密星的物态方程时,可以忽略旋转对相 变的影响而只考虑旋转的整体效应^[168]。值得指出, 正如体积效应研究中所显示的,这里边界条件对结 果的影响也可能是非常大的^[66],尤其在体系的体积 比较小时。

至于旋转对解禁闭相变影响,使用有效模型和 全息方法的研究都表明,旋转有利于解禁闭的发 生^[61-63.67],但格点计算的结果与之相反^[64-65],因此,该 问题仍有待进一步研究。

QGP 和致密星在旋转时往往伴随着强磁 场^[169-172],因此,旋转和磁场同时存在时的QCD相变 研究也受到关注。磁场下的QCD物态本就是一个 比较重要的研究方向(可参考文献[173])。磁场的 一个重要效应是磁催化,即手征凝聚随磁场增强而 变大。但人们又发现在某些温度和磁场强度时,会 出现手征凝聚随磁场增强而减小的现象,称为反磁 催化,其机制目前仍未达成共识[173-174]。在同时考虑 旋转和磁场之后,相变行为变得更加复杂。在不同 的参数区间里,QCD相变会有不同的特点^[71]。人们 发现有旋转时,在某些参数区间,也会出现手征凝聚 随磁场增大而减小的现象[68.71]。文献[69-70]研究 了同时存在旋转和磁场时的π凝聚相变,发现二者 的同时存在促进π凝聚的产生。在同时考虑旋转和 磁场对相变影响的研究中,同样需要限制系统为有 限尺寸。文献[71]中对均匀磁场下旋转系的自由 Dirac 方程求解表明,在用圆柱形的边界条件把系统 限制在光速面以内的情况下,旋转真空与非旋转真 空等价。现有的研究都支持旋转不能改变真空,但 都是在某种特定形状和种类的边界条件下的特例, 而非一般证明。

目前旋转效应的研究绝大多数都假定旋转是刚性的,这样的假定便于数学处理。但真实QCD物态如重离子碰撞产生的火球,其旋转并不是刚性的。 非刚性旋转对QCD物态的影响仍是一个值得探索的课题。

图9 不同角速度下夸克有效质量随温度的变化,半径 *R* = 1.97 fm,位置 *r* = 0.8*R*,化学势μ = 0^[57]

Fig.9 The variation of the effective quark mass with temperature at different angular velocities when radius R = 1.97 fm, location r = 0.8R, and chemical potential $\mu = 0^{[57]}$

图 10 不同角速度下夸克有效质量随化学势的变化,半径 R = 1.97 fm,位置r = 0.6R,温度T = 50 MeV^[57] Fig.10 The variation of the effective quark mass with chemical potential at different angular velocities when the radius R = 1.97 fm, location r = 0.8R, and temperature $\mu = 0^{[57]}$

4 致密星:中子星、混杂星、夸克星

QCD相图的另一个研究热点是低温有限密区域,致密星体的观测信息对理论研究提供了有效约束。1967年,人们首次探测到脉冲星,通过一系列观测,大家对脉冲星有了一个基本的认识:脉冲星是一个具有约一到两个太阳质量、半径在10~20 km的致密天体。人们认为,这类天体是中子星,其中心存在低温有限密强相互作用物质。其中部分中子星具有强磁场、旋转非常快和转速发生突变等现象。

人们通过对脉冲星的观测推断,中子星具有壳层结构。在一层很薄的大气之下,先是外壳层,由原子核和电子组成,原子核之间构成晶格结构,密度小于约4×10¹¹g·cm⁻³。再向里,是内壳层,由自由中子、电子和丰中子原子核组成,密度约在4×10¹¹g·cm⁻³至0.5 ρ_0 之间,其中 ρ_0 为核物质饱和密度。在最中心的核区,为本文重点讨论的低温有限密强相互作用物质,密度大于0.5 ρ_0 。核区部分所占比例较大,对中子星整体性质影响较大。尤其是对于密度大于 ρ_0 的低温有限密强相互作用物质区域,由于缺乏地面实验,人们对其性质尚无定论,一部分

学者猜测核区可能存在超子及夸克[84]。

脉冲星在射电波段、可见光波段、X射线和y射 线波段均有观测。现有的一些天文观测能够测量中 子星的质量和大致的半径,其中有一些观测结果表 明存在大于两个太阳质量的脉冲星^[86-87],可对低温 有限密强相互作用物质的物态方程进行有效的限 制。500 m 口径球面射电望远镜(Five-hundredmeter Aperture Spherical radio Telescope, FAST)和平 方公里阵列射电望远镜(Square Kilometre Array, SKA)对毫秒脉冲星和双星系统敏感,在灵敏度上有 数量级的提高^[88-89]。X射线卫星项目,例如中子星 内部成分探测器(Neutron star Interior Composition Explorer, NICER)^[90]、大型X射线计时观测台(Large Observatory for X-ray Timing, LOFT)[91] 和硬X射线 调制望远镜(慧眼)可以把脉冲星的半径测量提高到 一个前所未有的精度。从2019年12月以来,NICER 陆续公开一些质量半径数据^[92-97],已经有研究用 NICER 的数据限制物态方程^[92,97]。此外,引力波探 测的出现给中子星的研究带来了新的方向,能更好 地限制中子星的物态方程及结构。2017年8月17 日,激光干涉引力波天文台(Laser Interferometer Gravitational-Wave Observatory, LIGO) 探测到双中 子星绕转的引力波信号[82,98],并且伴随着其他电磁 信号。引力波GW170817带来了关于中子星的信 息,如双星的质量比和约化质量,同时还有关于中子 星潮汐撕裂时的形变参数等信息^[82,98]。这次观测更 好地限制了物态的声速、中子皮厚度及核物质对称 能,未排除夸克物质存在的可能性。另外还有一些 小质量中子星相关的观测,指向奇异夸克星存在的 可能性。

由于格点理论的"符号问题",人们目前无法针 对上述问题(如中子星构型、物态方程、质量-半径关 系等)进行第一性原理计算,因此需要借助非微扰 QCD有效模型进行研究。

理论上,在两味和三味NJL模型框架下我们可 以计算零温有限化学势下的强相互作用物质物态方 程,即能量密度-压强(*ϵ* - *P*)关系:

$$\epsilon = -P + \sum_{i} \mu_{i} \rho_{i} \tag{42}$$

其中:压强-化学势($P - \mu$)关系和粒子数密度-化学 势($\rho - \mu$)关系可通过如下:

$$P(\mu) = P(\mu = 0) + \int_{0}^{\mu} d\mu' \rho(\mu')$$
(43)

$$\rho_{i}(\mu) = \left\langle \psi^{\dagger}\psi \right\rangle_{i} = -N_{c} \int \frac{d^{4}p}{\left(2\pi\right)^{4}} \operatorname{tr}\left[iS_{i}\gamma_{0}\right] \qquad (44)$$

这里 $P(\mu = 0)$ 是一个模型依赖的唯象参数,表示真

空压强,与MIT口袋模型的真空口袋常数-B等价; "tr"符号是对Dirac空间求迹。通常B¹⁴的取值范围 为100~200 MeV。

考虑到中子星中的β平衡和电中性条件,

$$\mu_{d} = \mu_{u} + \mu_{e}$$

$$\mu_{s} = \mu_{u} + \mu_{e}$$

$$\frac{2}{3}\rho_{u} = \frac{1}{3}\rho_{d} + \frac{1}{3}\rho_{s} + \rho_{e}$$
(45)

物态方程(42)可简化为单变量函数,通常人们 选择重子化学势 $\mu_{\rm B} = \mu_u + \mu_d + \mu_s$ 作为自由变量。 这里所讨论的强相互作用物质及其相变对应于 QCD相图的低温有限密区域。通过求解Tolman-Oppenheimer-Volkov(TOV)方程与引力场度规方 程,人们可以得到中子星的质量-半径关系与潮汐形 变参数,并与上述天文观测结果进行比较。

近年来,除了传统的纯中子星构型,一些针对奇 异混杂星(即星体核心中的内核部分包含解禁闭的 夸克胶子等离子体,内核以外仍由中子物质构成的 中子星)和夸克星(由解禁闭的夸克胶子等离子体构 成)的研究取得了重要进展。我们接下来主要针对 这两种中子星构型展开讨论。

4.1 奇异混杂星

一般人们采用零温下的核物质物态方程描述内 核以外的中子星物质,常用的核物质模型包括相对 论平均场模型^[175](如NL3、NL3op模型)、APR模 型^[176]、Sly模型^[177]等。奇异夸克物质的物态方程目 前缺乏基于QCD拉氏量的第一性原理计算。因此, 人们通常借助有效场论模型,如DSE、NJL模型和准 粒子模型等研究中子星内的夸克物质物态方程。

为了得到奇异混杂星内的强相互作用物质物态 方程,人们需要根据不同的相变类型采用相应的衔 接方式将核物质与夸克物质的物态方程连接起来。 常用的混杂物态方程构型有 Maxwell 构型、Gibbs 构 型以及三窗口衔接构型^[178],其中,Maxwell 构型和 Gibbs 构型与一级相变相对应,而三窗口衔接构型与 平滑过渡相对应。

图11展示的三条斜率较大的曲线即为三味NJL 模型在固有时正规化下的*P*-μ关系,分别对应于口 袋常数*B*^{1/4}取167 MeV、170 MeV、171 MeV的情况; 黑色曲线是相对论平均场模型NL3ωρ给出的*P*-μ 关系^[179]。可以看出,口袋常数*B*^{1/4}~(167,171) MeV 时,三味NJL模型计算得到的夸克物态方程彼此差 别不大,而与核物态方程差别较大,其交点μ_B约 1.3 GeV。对于图11中的夸克物质物态方程和核物 质物态方程进行三窗口衔接即可得到混杂物态方 程,其衔接函数为:

$$P(\mu) = P_{\rm H}(\mu) f_{-}(\mu) + P_{\rm Q}(\mu) f_{+}(\mu)$$
$$f_{\pm}(\mu) = \frac{1}{2} \left(1 \pm \tanh\left(\frac{\mu - \bar{\mu}}{\Gamma}\right) \right) \tag{46}$$

式中: μ 代表衔接窗口中心化学势;窗口 μ - $\Gamma \le \mu \le \bar{\mu} + \Gamma$ 对应平滑过渡区域,进而得到的奇异 混杂星质量-半径关系与并合双星潮汐形变参数分 别如图12和图13所示。

图 12 中的9条曲线来自不同 $B^{1/4}$ 、 $\bar{\mu}$ 、 Γ 参数下的 9组代表性物态方程对应的质量-半径关系。其中, 最大的混杂星质量可达 2.19 M_{\odot} ,相应的半径为 12.01 km。通过对($B^{1/4}$, $\bar{\mu}$, Γ)构成的参数空间进行 扫描计算并结合中子星质量与潮汐形变参数的天文 观测约束,可以将口袋常数 $B^{1/4}$ 限制在 166.16~ 171.06 MeV。而混杂星核心的重子化学势的计算结 果表明,满足天文观测约束的混杂星内核并非纯夸 克核,而是强子-夸克混杂物质相。

图13左下方的短弯曲线是上述9组混杂物态方程所得的GW170817事件中的并合双星的潮汐形变 参数 $\Lambda_1 - \Lambda_2$ 关系曲线,右上方长弯曲线代表核物质 物态方程 NL3 ω p 对应的纯中子星潮汐形变参数 $\Lambda_1 - \Lambda_2$ 关系。两者所夹的两条曲线分别与坐标轴 包围的左下方区域对应于不同模型预测的双星并合 事件GW170817中低自旋旋进情况下的90%后验概 率区域。其中右上侧曲线是较早公布的测量结 果^[98],左下侧曲线是最近根据波模型 SEOBNRT 更 新后的测量结果^[99]。我们发现,尽管纯中子星构型 下的核物质物态方程 NL3 ω p 不满足潮汐形变参数 的天文观测约束,但是其所构成的混杂物态方程OL3 ω p 仍然可以很好地描述混杂星中的强子相。

4.2 夸克星

夸克星是一类主要由解禁闭的夸克胶子等离子体构成的脉冲星模型。此前,Witten等^[180-183]认为强相互作用物质的基态需要包含奇异夸克物质,即三

图 12 混杂星质量-半径关系^[179] 阴影区域代表来自 PSR J0348+0432 的中子星质量约束 Fig.12 Mass-radius relations of hybrid stars^[179]. The shaded region represents the mass constraint on neutron stars from PSR J0348+0432.

图13 奇异混杂星和纯中子星潮汐形变参数 $\Lambda_1 - \Lambda_2$ 关 系^[179]

长直点线表示 $\Lambda_1 = \Lambda_2$ 的边界 **Fig.13** Tidal deformability $\Lambda_1 - \Lambda_2$ of hybrid stars and the pure neutron star^[179]. The long straight dotted line indicates the boundary of $\Lambda_1 = \Lambda_2$, along which the above stars are not deformable.

味夸克物质比两味夸克物质更稳定。之后一系列关于奇异(混杂)夸克星特性的研究得以展开^[184-190]。 然而2018年的一项研究^[191]指出,对于重子数大于 300的超大核物质,非奇异夸克物质可能更稳定。 我们知道中子星和夸克星就是一类具有超大重子数 的致密星体。因此理论上并不能排除非奇异夸克星 存在的可能。两味和三味夸克物质哪种更稳定目前 还是一个开放性问题,我们需要计算两味和三味夸 克物质的平均单重子能量,来给出相关的答案。

近年来在NJL模型框架下应用自洽平均场近似 方法^[192-193],针对奇异夸克星与非奇异夸克星的研 究^[194-196]指出,无论是采用三维动量正规化还是固有 时正规化都能得到符合天文观测约束的结果,即最 大星体质量大于 2 $M_{\odot}^{[86-87]}$,半径符合 NICER 约 束^[93-94,197],潮汐形变参数 $\Lambda(1.4 M_{\odot}) \leq 800^{[98]}$ 。

最近一项研究^[198]表明,在上述的自治平均场近 似的NJL模型下,非奇异夸克星和奇异夸克星都可 能稳定存在,其结果依赖于拉氏量中的矢量相互作 用道和交换相互作用道的比重以及与夸克色禁闭相 关的真空压强,如图14所示。对于相同的*R*,,*a*较大 且B较小时(右下阴影区域),非奇异夸克物质更稳定;反之, α 较小且B较大时(左上阴影区域),奇异夸克物质更稳定。此外,非奇异夸克星对应的物态方程比奇异夸克星的更硬,其所允许的最大脉冲星质量(~2.7 M_{\odot})要比奇异夸克星的(~2.1 M_{\odot})更大,如图15所示。

图14 两味与三味夸克物质的稳定窗口^[198] 其中: $R_v = G_v/G$,代表矢量相互作用耦合常数 G_v 与标量相互 作用耦合常数G的比值,a为交换相互作用道所占的比重,B为口袋常数

Fig.14 Stability windows of two-flavor and three-flavor quark matter^[198]. $R_v = G_v/G$ represents the ratio of coupling constants of vector interaction and scalar interaction, α is the weighting factor of the exchange interaction channel, and *B* is the bag constant.

通过以上研究,我们可以对模型的参数空间进行限制,进而得到符合限制的零温下的QCD相变类型和相变点。例如,对于非奇异夸克星,在自洽平均场近似的NJL模型下,采用三维动量正规化所得的夸克物态方程,α值越大或口袋常数越小,其物态方程越硬,对应的夸克星最大质量也越大,结果如表1所示^[196]。而零温下不同α值对应的有效夸克质量随化学势依赖关系如图16所示^[196],当α由零增大至0.85,其相变过程将由一级相变转变为平滑过渡,赝临界化学势 μ_{pe} 约320 MeV(与一级相变中所谓的"临界点"不同,这里的"赝临界点"对应于平滑过渡,指的是夸克凝聚或有效夸克质量曲线的拐点)。因此,当口袋常数 $B \ge (100 \text{ MeV})^4$ 时,对于脉冲星的纯夸克星构型,符合天文观测约束的QCD相变类型倾向于平滑过渡。

表1 不同参数下的夸克星最大质量与1.6倍、1.4倍太阳质 量的夸克星半径的计算结果¹⁹⁶

Table 1The maximum masses of quark stars withdifferent parameter sets, and the radius of quark stars with1.6 and 1.4 $M_{\odot}^{[196]}$

α	B / MeV^4	$M_{\rm max}$	$R_{1.6}$ / km	$R_{1.4}$ / km
0.9	100^{4}	$2.01 \ \mathrm{M_{sol}}$	10.5	10.2
0.9	90 ⁴	$2.05 \ M_{_{sol}}$	10.9	10.8
0.9	80^{4}	2.11 M _{sol}	11.5	11.3
0.8	80^{4}	2.00 M_{sol}	10.9	10.7

此外,文献[195]在两味自治平均场近似的NJL 模型框架下,采用固有时正规化研究了零温有限化 学势下的QCD物态方程与纯夸克星结构。相关计 算结果表明符合天文观测约束的QCD相变过程亦 为平滑过渡,且赝临界化学势μ_m约330 MeV。

图16 零温下,自洽平均场近似的三维动量截断正规化NJL 模型对应的夸克有效质量-化学势关系^[196]

Fig.16 At absolute zero, the relationship between the effective quark mass and chemical potential from the Nambu–Jona-Lasinio (NJL) model with the self-consistent mean field approximation method and three-momentum cutoff regularization^[196]

5 结语

本文回顾了近期QCD相图研究的多方面进展,

涵盖了利用高阶磁化率寻找相变信号、QCD相图的 手征不平衡效应、有限体积效应和旋转效应以及 QCD物态方程在致密星体中的应用等。

在利用重子数高阶涨落确定相变信号、寻找临 界点方面,近年来有效场论的计算和STAR开展的 束能量扫描实验都取得了很大的进展。关于净质子 数高阶涨落之比对碰撞能量的依赖关系,理论在合 理近似下的计算结果和实验可以定性符合。然而目 前对于临界点是否存在的问题,理论和实验还没有 最终的定论。未来需要积累更多的实验数据^[175],并 在理论上提出更加敏感的临界点信号,包括更高阶 的涨落等,加以深入而细致地研究。

关于有限手征化学势 μ_s 对 CEP 位置的影响,在 DSE 框架下,通过对三种有效相互作用模型的研究 表明,在 $T - \mu_s$ 平面上,都不存在 CEP,即不存在 CEP_s。在模型参数发生10%变化时,结论不会发生 定性改变。对于 NJL 模型的计算,不同的截断方式 会得出不同的结论。通过对夸克能隙方程中所采用 的截断方案进行分析,发现硬截断和软截断关于 CEP_s存在性的结果定性不同,其原因在于夸克凝聚 的温度依赖项在采用软截断方案时包含更多的大动 量夸克模式贡献,导致 CEP_s不存在。在 PNJL 模型 的计算中,出现了类似的情况,CEP_s的存在性与截 断参数有关。当PNJL 模型采用较小的截断时,包含 更少的大动量夸克模式的贡献,结果与格点 QCD、 DSE 的结果一致。

对于体积效应,有效模型的研究一致表明小体 积效应对重离子碰撞有一定影响,主要体现在手征 赝临界温度、CEP位置的变化以及介子融解温度的 降低。另一方面,DSE研究表明重子数涨落的比值 对于体积效应可能不敏感,这使得重离子碰撞实验 数据和热力学极限下的计算结果可以直接进行 对比。

对于旋转效应,NJL模型研究表明旋转会压低 手征凝聚,使得相变温度和化学势降低。旋转效应 在相变点附近比较显著,在远离相变点的区间不显 著。定量的研究结果表明,对于致密星物态的研究, 可以忽略旋转对相变的影响而只考虑其整体效应。 在QCD相变旋转效应的研究中,为了避免出现超光 速,同时考虑有限尺寸效应是非常重要的。在解禁 闭相变方面,旋转的影响尚未有定论,而在同时存在 旋转和磁场的情况下,相变行为会变得非常复杂,这 些都有待进一步的研究。此外,非刚性旋转的效应 也是未来值得探索的课题。

对于致密星的研究,目前对于零温有限化学势 下的QCD物态方程和含有夸克物态的中子星结构, 人们需要诉诸有效场论模型研究。结合现有天文观 测可以限制模型的参数空间,从而对零温下的QCD 相变的类型和相变点给出限制。在NJL模型框架 下,符合天文观测约束的纯夸克星物态方程对应的 QCD 相变为平滑过渡,其赝临界化学势µ_∞介于 300~350 MeV,且(非奇异/奇异)夸克星最大质量可 达2.7 M_☉/2.1 M_☉;而三窗口衔接构型的奇异混杂星 最大质量可达2.19M₀,口袋常数B^{1/4}被约束在 166.16~171.06 MeV,核心为强子-夸克混杂相。除 了上文提及的致密星质量半径观测和引力波观测, 其他天文观测活动也有助于判断致密星的本质,比 如与致密星相关的爆发活动观测。文献[200]认为, 奇异夸克星可能会产生具有周期性的快速射电暴等 特殊现象。期待未来日益丰富的天文观测能给中子 星结构和QCD相变研究带来更多的线索。另外基 于第一性原理的场论计算进展也将有助于我们更好 地理解强相互作用物质及其相变。

致谢 宗红石教授指导完成了本文介绍的诸多研究 论文,在此缅怀感谢。

作者贡献声明 所有作者均参与文章撰写,贡献 相等。

参考文献

- Shuryak E. What RHIC experiments and theory tell us about properties of quark-gluon plasma? [J]. Nuclear Physics A, 2005, 750(1): 64 - 83. DOI: 10.1016/j. nuclphysa.2004.10.022.
- 2 Niida T, Miake Y. Signatures of QGP at RHIC and the LHC[J]. AAPPS Bulletin, 2021, **31**(1): 12. DOI: 10.1007/ s43673-021-00014-3.
- Bazavov A, Brambilla N, Ding H T, *et al.* Polyakov loop in 2+1 flavor QCD from low to high temperatures[J]. Physical Review D, 2016, 93(11): 114502. DOI: 10.1103/ physrevd.93.114502.
- 4 Brodsky S J, Roberts C D, Shrock R, et al. Confinement contains condensates[J]. Physical Review C, 2012, 85(6): 065202. DOI: 10.1103/physrevc.85.065202.
- Masayuki A, Koichi Y. Chiral restoration at finite density and temperature[J]. Nuclear Physics A, 1989, 504(4): 668 - 684. DOI: 10.1016/0375-9474(89)90002-x.
- 6 Ackermann K H, Adams N, Adler C, *et al.* Elliptic flow in Au+Au collisions at $\sqrt{s_{NN}}$ =130 GeV[J]. Physical Review Letters, 2001, **86**(3): 402 - 407. DOI: 10.1103/ PhysRevLett.86.402.
- 7 Aamodt K, Abelev B, Quintana A A, et al. Elliptic flow of

charged particles in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV [J]. Physical Review Letters, 2010, **105**(25): 252302. DOI: 10.1103/PhysRevLett.105.252302.

- 8 Aamodt K, Abelev B, Quintana A A, *et al.* Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV[J]. Physical Review Letters, 2011, **107**(3): 032301. DOI: 10. 1103/PhysRevLett.107.032301.
- 9 Eskola K J. Nearly perfect quark-gluon fluid[J]. Nature Physics, 2019, 15(11): 1111 - 1112. DOI: 10.1038/ s41567-019-0643-0.
- Rebhan A, Steineder D. Violation of the holographic viscosity bound in a strongly coupled anisotropic plasma [J]. Physical Review Letters, 2012, 108(2): 021601. DOI: 10.1103/PhysRevLett.108.021601.
- Skokov V V, Illarionov A Y, Toneev V D. Estimate of the magnetic field strength in heavy-ion collisions[J]. International Journal of Modern Physics A, 2009, 24(31): 5925 - 5932. DOI: 10.1142/s0217751x09047570.
- 12 Adamczyk L, Adkins J K, Agakishiev G, *et al.* Global Λ hyperon polarization in nuclear collisions[J]. Nature, 2017, **548**(7665): 62 - 65. DOI: 10.1038/nature23004.
- 13 Aoki Y, Fodor Z, Katz S D, et al. The QCD transition temperature: results with physical masses in the continuum limit[J]. Physics Letters B, 2006, 643(1): 46 – 54. DOI: 10.1016/j.physletb.2006.10.021.
- 14 Aoki Y, Borsányi S, Dürr S, *et al.* The QCD transition temperature: results with physical masses in the continuum limit II[J]. Journal of High Energy Physics, 2009, 2009(6): 88. DOI: 10.1088/1126-6708/2009/06/088.
- 15 Bhattacharya T, Buchoff M I, Christ N H, et al. QCD phase transition with chiral quarks and physical quark masses[J]. Physical Review Letters, 2014, 113(8): 082001. DOI: 10.1103/PhysRevLett.113.082001.
- 16 He M, Li J F, Sun W M, et al. Quark number susceptibility around the critical end point[J]. Physical Review D, 2008, 79: 036001. DOI: 10.1103/PhysRevD. 79.036001.
- 17 Fischer C S, Luecker J, Mueller J A. Chiral and deconfinement phase transitions of two-flavour QCD at finite temperature and chemical potential[J]. Physics Letters B, 2011, 702(5): 438 441. DOI: 10.1016/j. physletb.2011.07.039.
- 18 Shi C, Wang Y L, Jiang Y, et al. Locate QCD critical end point in a continuum model study[J]. Journal of High

Energy Physics, 2014, **2014**(7): 14. DOI: 10.1007/JHEP07 (2014)014.

- 19 Gao F, Liu Y X. QCD phase transitions via a refined truncation of Dyson-Schwinger equations[J]. Physical Review D, 2016, 94(7): 076009. DOI: 10.1103/ PhysRevD.94.076009.
- 20 Du Y L, Cui Z F, Xia Y H, et al. Discussions on the crossover property within the Nambu-Jona-Lasinio model [J]. Physical Review D, 2013, 88(11): 114019. DOI: 10. 1103/physrevd.88.114019.
- Du Y L, Lu Y, Xu S S, *et al.* Susceptibilities and critical exponents within the Nambu-Jona-Lasinio model[J]. International Journal of Modern Physics A, 2015, 30(34): 1550199. DOI: 10.1142/s0217751x15501997.
- 22 Costa P, Ruivo M C, de Sousa C A. Thermodynamics and critical behavior in the Nambu-Jona-Lasinio model of QCD[J]. Physical Review D, 2008, 77(9): 096001. DOI: 10.1103/physrevd.77.096001.
- 23 Fukushima K. Phase diagrams in the three-flavor Nambu-Jona-Lasinio model with the Polyakov loop[J]. Physical Review D, 2008, 77(11): 114028. DOI: 10.1103/physrevd. 77.114028.
- 24 Fu W J, Zhang Z, Liu Y X. 2+1 flavor Polyakov-Nambu-Jona-Lasinio model at finite temperature and nonzero chemical potential[J]. Physical Review D, 2008, 77: 014006. DOI: 10.1103/physrevd.77.014006.
- 25 Costa P, de Sousa C A, Ruivo M C, *et al.* The QCD critical end point in the PNJL model[J]. EPL (Europhysics Letters), 2009, **86**(3): 31001. DOI: 10.1209/0295-5075/86/ 31001.
- 26 Fu W J, Pawlowski J M, Rennecke F. QCD phase structure at finite temperature and density[J]. Physical Review D, 2020, **101**(5): 054032. DOI: 10.1103/ physrevd.101.054032.
- Adhikari P, Andersen J O. QCD at finite isospin density: Chiral perturbation theory confronts lattice data[J]. Physics Letters B, 2020, 804: 135352. DOI: 10.1016/j. physletb.2020.135352.
- 28 Adhikari P, Andersen J O, Kneschke P. Two-flavor chiral perturbation theory at nonzero isospin: pion condensation at zero temperature[J]. The European Physical Journal C, 2019, **79**(10): 874. DOI: 10.1140/epjc/s10052-019-7381-4.
- 29 Schaefer B J, Pawlowski J M, Wambach J. Phase structure of the Polyakov-quark-meson model[J]. Physical Review D, 2007, 76(7): 074023. DOI: 10.1103/physrevd.

76.074023.

- 30 Nickel D. Inhomogeneous phases in the Nambu-Jona-Lasinio and quark-meson model[J]. Physical Review D, 2009, 80(7): 074025. DOI: 10.1103/physrevd.80.074025.
- 31 Skokov V, Friman B, Redlich K. Quark number fluctuations in the Polyakov loop-extended quark-meson model at finite baryon density[J]. Physical Review C, 2011, 83(5): 054904. DOI: 10.1103/physrevc.83.054904.
- 32 Luo X F, Xu N. Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavyion collisions at RHIC: an overview[J]. Nuclear Science and Techniques, 2017, 28(8): 112. DOI: 10.1007/s41365-017-0257-0.
- 33 Luo X F. Energy dependence of moments of net-proton and net-charge multiplicity distributions at STAR[C]. PoS (CPOD2014)019. DOI: 10.48550/arXiv.1503.02558.
- 34 Luo X F, Wang Q, Xu N, *et al.* Properties of QCD matter at high baryon density[M]. Singapore: Springer Nature Singapore, 2022. DOI: 10.1007/978-981-19-4441-3.
- Belavin A A, Polyakov A M, Schwartz A S, *et al.*Pseudoparticle solutions of the Yang-Mills equations[J].
 Physics Letters B, 1975, 59: 85. DOI: 10.1016/0370-2693 (75)90163-X.
- Adler S L. Axial-vector vertex in spinor electrodynamics
 [J]. Physical Review, 1969, 177(5): 2426 2438. DOI: 10.1103/physrev.177.2426.
- Bell J S, Jackiw R. A PCAC puzzle: π⁰→γγ in the σ-model
 [J]. Nuovo Cimento A, 1969, 60(1): 47 61. DOI: 10. 1007/BF02823296.
- 38 Christ N H. Conservation-law violation at high energy by anomalies[J]. Physical Review D, 1980, 21(6): 1591 – 1602. DOI: 10.1103/physrevd.21.1591.
- Smilga A V. Anomaly mechanism at finite temperature[J].
 Physical Review D, Particles and Fields, 1992, 45(4):
 1378 1394. DOI: 10.1103/physrevd.45.1378.
- Yang L K, Luo X F, Segovia J, *et al.* A brief review of chiral chemical potential and its physical effects[J]. Symmetry, 2020, **12**(12): 2095. DOI: 10.3390/ sym12122095.
- Ruggieri M, Peng G X, Chernodub M. Chiral relaxation time at the crossover of quantum chromodynamics[J]. Physical Review D, 2016, 94(5): 054011. DOI: 10.1103/physrevd.94.054011.
- 42 Ruggieri M, Peng G X. Quark matter in a parallel electric and magnetic field background: Chiral phase transition and equilibration of chiral density[J]. Physical Review D,

2016, **93**(9): 094021. DOI: 10.1103/physrevd.93.094021.

- Ruggieri M, Chernodub M N, Lu Z Y. Topological susceptibility, divergent chiral density, and phase diagram of chirally imbalanced QCD medium at finite temperature [J]. Physical Review D, 2020, **102**: 014031. DOI: 10.1103/ physrevd.102.014031.
- Bass S A, Belkacem M, Bleicher M, *et al.* Microscopic models for ultrarelativistic heavy ion collisions[J]. Progress in Particle and Nuclear Physics, 1998, 41: 255 369. DOI: 10.1016/s0146-6410(98)00058-1.
- Palhares L F, Fraga E S, Kodama T. Chiral transition in a finite system and possible use of finite-size scaling in relativistic heavy ion collisions[J]. Journal of Physics G: Nuclear and Particle Physics, 2011, 38(8): 085101. DOI: 10.1088/0954-3899/38/8/085101.
- 46 Braun J, Klein B, Schaefer B J. On the phase structure of QCD in a finite volume[J]. Physics Letters B, 2012, 713 (3): 216 223. DOI: 10.1016/j.physletb.2012.05.053.
- Skokov V, Friman B, Redlich K. Volume fluctuations and higher-order cumulants of the net baryon number[J].
 Physical Review C, 2013, 88(3): 034911. DOI: 10.1103/ physrevc.88.034911.
- 48 Bhattacharyya A, Deb P, Ghosh S K, et al. Thermodynamic properties of strongly interacting matter in a finite volume using the Polyakov-Nambu-Jona-Lasinio model[J]. Physical Review D, 2013, 87(5): 054009. DOI: 10.1103/physrevd.87.054009.
- Bhattacharyya A, Ray R, Sur S. Fluctuation of strongly interacting matter in the Polyakov-Nambu-Jona-Lasinio model in a finite volume[J]. Physical Review D, 2015, 91 (5): 051501. DOI: 10.1103/physrevd.91.051501.
- 50 Klein B. Modeling finite-volume effects and chiral symmetry breaking in two-flavor QCD thermodynamics [J]. Physics Reports, 2017, 1: 707 708. DOI: 10.1016/j. physrep.2017.09.002.
- 51 Tripolt R A, Braun J, Klein B, *et al.* Effect of fluctuations on the QCD critical point in a finite volume[J]. Physical Review D, 2014, **90**(5): 054012. DOI: 10.1103/physrevd. 90.054012.
- Juričić A, Schaefer B J. Chiral thermodynamics in a finite box[J]. Acta Physica Polonica B Proceedings Supplement, 2017, 10(3): 609. DOI: 10.5506/aphyspolbsupp.10.609.
- 53 Watts A L, Andersson N, Chakrabarty D, et al. Colloquium: Measuring the neutron star equation of state using X-ray timing[J]. Reviews of Modern Physics, 2016, 88(2): 021001. DOI: 10.1103/revmodphys.88.021001.

- 54 Jiang Y, Liao J F. Pairing phase transitions of matter under rotation[J]. Physical Review Letters, 2016, 117(19): 192302. DOI: 10.1103/PhysRevLett.117.192302.
- 55 Chernodub M N, Gongyo S. Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics[J]. Journal of High Energy Physics, 2017, 2017(1): 136. DOI: 10.1007/JHEP01(2017)136.
- 56 Ebihara S, Fukushima K, Mameda K. Boundary effects and gapped dispersion in rotating Fermionic matter[J]. Physics Letters B, 2017, 764: 94 - 99. DOI: 10.1016/j. physletb.2016.11.010.
- 57 Zhang Z, Shi C, He X T, *et al.* Chiral phase transition inside a rotating cylinder within the Nambu-Jona-Lasinio model[J]. Physical Review D, 2020, **102**(11): 114023. DOI: 10.1103/physrevd.102.114023.
- 58 Wang L X, Jiang Y, He L Y, *et al.* Chiral vortices and pseudoscalar condensation due to rotation[J]. Physical Review D, 2019, **100**(11): 114009. DOI: 10.1103/ physrevd.100.114009.
- 59 Sun F, Huang A P. Properties of strange quark matter under strong rotation[J]. Physical Review D, 2022, 106 (7): 076007. DOI: 10.1103/physrevd.106.076007.
- 60 Nishimura K, Yamamoto N. Topological term, QCD anomaly, and the η' chiral soliton lattice in rotating baryonic matter[J]. Journal of High Energy Physics, 2020, 2020(7): 196. DOI: 10.1007/JHEP07(2020)196.
- Fujimoto Y, Fukushima K, Hidaka Y. Deconfining phase boundary of rapidly rotating hot and dense matter and analysis of moment of inertia[J]. Physics Letters B, 2021, 816: 136184. DOI: 10.1016/j.physletb.2021.136184.
- 62 Chernodub M N. Inhomogeneous confining-deconfining phases in rotating plasmas[J]. Physical Review D, 2021, 103(5): 054027. DOI: 10.1103/physrevd.103.054027.
- 63 Chen X, Zhang L, Li D N, *et al.* Gluodynamics and deconfinement phase transition under rotation from holography[J]. Journal of High Energy Physics, 2021, 2021(7): 132. DOI: 10.1007/JHEP07(2021)132.
- 64 Braguta V V, Kotov A Y, Kuznedelev D D, et al. Study of the confinement/deconfinement phase transition in rotating lattice SU(3) gluodynamics[J]. JETP Letters, 2020, 112(1): 6 - 12. DOI: 10.1134/S0021364020130044.
- 65 Braguta V V, Kotov A Y, Kuznedelev D D, *et al.* Influence of relativistic rotation on the confinement-deconfinement transition in gluodynamics[J]. Physical Review D, 2021, 103(9): 094515. DOI: 10.1103/physrevd.103.094515.

⁶⁶ Chernodub M N, Gongyo S. Effects of rotation and

boundaries on chiral symmetry breaking of relativistic fermions[J]. Physical Review D, 2017, **95**(9): 096006. DOI: 10.1103/physrevd.95.096006.

- Braga N R F, Faulhaber L F, Junqueira O C. Confinementdeconfinement temperature for a rotating quark-gluon plasma[J]. Physical Review D, 2022, 105(10): 106003.
 DOI: 10.1103/physrevd.105.106003.
- 68 Chen H L, Fukushima K, Huang X G, et al. Analogy between rotation and density for Dirac fermions in a magnetic field[J]. Physical Review D, 2016, 93(10): 104052. DOI: 10.1103/physrevd.93.104052.
- 69 Liu Y Z, Zahed I. Pion condensation by rotation in a magnetic field[J]. Physical Review Letters, 2018, 120(3): 032001. DOI: 10.1103/PhysRevLett.120.032001.
- 70 Cao G Q, He L Y. Rotation induced charged pion condensation in a strong magnetic field: a Nambu-Jona-Lasino model study[J]. Physical Review D, 2019, 100(9): 094015. DOI: 10.1103/physrevd.100.094015.
- 71 Sadooghi N, Tabatabaee Mehr S M A, Taghinavaz F. Inverse magnetorotational catalysis and the phase diagram of a rotating hot and magnetized quark matter[J]. Physical Review D, 2021, 104(11): 116022. DOI: 10. 1103/physrevd.104.116022.
- 72 Cao G Q. Charged rho superconductor in the presence of magnetic field and rotation[J]. The European Physical Journal C, 2021, 81(2): 148. DOI: 10.1140/epjc/s10052-021-08900-8.
- 73 Son D T, Surówka P. Hydrodynamics with triangle anomalies[J]. Physical Review Letters, 2009, 103(19): 191601. DOI: 10.1103/physrevlett.103.191601.
- Kharzeev D E, Son D T. Testing the chiral magnetic and chiral vortical effects in heavy ion collisions[J]. Physical Review Letters, 2011, 106(6): 062301. DOI: 10.1103/ PhysRevLett.106.062301.
- 75 Landsteiner K, Megías E, Melgar L, *et al.* Holographic gravitational anomaly and chiral vortical effect[J]. Journal of High Energy Physics, 2011, **2011**(9): 121. DOI: 10. 1007/JHEP09(2011)121.
- 76 Landsteiner K, Megías E, Peña-Benítez F. Frequency dependence of the chiral vortical effect[J]. Physical Review D, 2014, 90(6): 065026. DOI: 10.1103/physrevd. 90.065026.
- 77 Kharzeev D E, Liao J, Voloshin S A, et al. Chiral magnetic and vortical effects in high-energy nuclear collisions—a status report[J]. Progress in Particle and Nuclear Physics, 2016, 88: 1 28. DOI: 10.1016/j.ppnp.

2016.01.001.

- 78 Abramchuk R, Khaidukov Z V, Zubkov M A. Anatomy of the chiral vortical effect[J]. Physical Review D, 2018, 98 (7): 076013. DOI: 10.1103/physrevd.98.076013.
- Zubkov M A. Hall effect in the presence of rotation[J].
 EPL (Europhysics Letters), 2018, 121(4): 47001. DOI: 10.1209/0295-5075/121/47001.
- Flachi A, Fukushima K. Chiral vortical effect with finite rotation, temperature, and curvature[J]. Physical Review D, 2018, 98(9): 096011. DOI: 10.1103/physrevd. 98. 096011.
- Lin S, Yang L X. Magneto-vortical effect in strong magnetic field[J]. Journal of High Energy Physics, 2021, 2021(6): 54. DOI: 10.1007/JHEP06(2021)054.
- Buballa M. NJL-model analysis of dense quark matter[J].
 Physics Reports, 2005, 407(4 6): 205 376. DOI: 10.
 1016/j.physrep.2004.11.004.
- Oertel M, Hempel M, Klähn T, *et al.* Equations of state for supernovae and compact stars[J]. Reviews of Modern Physics, 2017, 89(1): 015007. DOI: 10.1103/revmodphys. 89.015007.
- Haensel P, Potekhin A Y, Yakovlev D G. Neutron stars [M]. New York: Springer, 2007.
- 85 李昂, 胡金牛, 鲍世绍, 等. 致密物质状态方程: 中子星 与奇异星[J]. 原子核物理评论, 2019, 36(1): 1 - 36. DOI: 10.11804/NuclPhysRev.36.01.001.
 LI Ang, HU Jinniu, BAO Shishao, *et al.* Dense matter equation of state: neutron star and strange star[J]. Nuclear Physics Review, 2019, 36(1): 1 - 36. DOI: 10.11804/ NuclPhysRev.36.01.001.
- Antoniadis J, Freire P C C, Wex N, *et al.* A massive pulsar in a compact relativistic binary[J]. Science, 2013, 340 (6131): 448, 1233232. DOI: 10.1126/science.1233232.
- 87 Demorest P B, Pennucci T, Ransom S M, et al. A two-solar-mass neutron star measured using Shapiro delay[J]. Nature, 2010, 467(7319): 1081 1083. DOI: 10.1038/nature09466.
- 88 Kaplan D L, Bhalerao V B, van Kerkwijk M H, et al. A metal-rich low-gravity companion to a massive millisecond pulsar[J]. The Astrophysical Journal Letters, 2013, 765(2): 158. DOI: 10.1088/0004-637x/765/2/158.
- 89 Smits R, Lorimer D R, Kramer M, *et al.* Pulsar science with the five hundred metre Aperture Spherical Telescope [J]. Astronomy & Astrophysics, 2009, 505(2): 919 926. DOI: 10.1051/0004-6361/200911939.

⁹⁰ Gendreau K C, Arzoumanian Z, Okajima T. The Neutron

star Interior Composition ExploreR (NICER): an explorer mission of opportunity for soft X-ray timing spectroscopy [C]//SPIE Astronomical Telescopes + Instrumentation. Proceeding SPIE 8443, Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray, Amsterdam, Netherlands. 2012, **8443**: 322 - 329. DOI: 10.1117/12.926396.

- 91 Campana R, Feroci M, Del Monte E, *et al.* The LOFT (large observatory for X-ray timing) background simulations[C]//SPIE Astronomical Telescopes + Instrumentation. Proceeding SPIE 8443, Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray, Amsterdam, Netherlands. 2012, 8443: 1636 1644. DOI: 10.1117/12.925999.
- 92 Raaijmakers G, Riley T E, Watts A L, et al. A NICER view of PSR J0030+0451: implications for the dense matter equation of state[J]. The Astrophysical Journal Letters, 2019, 887(1): L22. DOI: 10.3847/2041-8213/ ab451a.
- P3 Riley T E, Watts A L, Bogdanov S, *et al.* A NICER view of PSR J0030+0451: millisecond pulsar parameter estimation[J]. The Astrophysical Journal Letters, 2019, 887(1): L21. DOI: 10.3847/2041-8213/ab481c.
- 94 Bogdanov S, Guillot S, Ray P S, *et al.* Constraining the neutron star mass-radius relation and dense matter equation of state with NICER. I. the millisecond pulsar Xray data set[J]. The Astrophysical Journal Letters, 2019, 887(1): L25. DOI: 10.3847/2041-8213/ab53eb.
- 95 Guillot S, Kerr M, Ray P S, et al. NICER X-ray observations of seven nearby rotation-powered millisecond pulsars[J]. The Astrophysical Journal Letters, 2019, 887(1): L27. DOI: 10.3847/2041-8213/ab511b.
- 96 Miller M C, Lamb F K, Dittmann A J, et al. PSR J0030+ 0451 mass and radius from NICER data and implications for the properties of neutron star matter[J]. The Astrophysical Journal Letters, 2019, 887(1): L24. DOI: 10.3847/2041-8213/ab50c5.
- 97 Bogdanov S, Lamb F K, Mahmoodifar S, et al. Constraining the neutron star mass-radius relation and dense matter equation of state with NICER. II. emission from hot spots on a rapidly rotating neutron star[J]. The Astrophysical Journal Letters, 2019, 887(1): L26. DOI: 10.3847/2041-8213/ab5968.
- 98 Abbott B P, Abbott R, Abbott T D, et al. GW170817: observation of gravitational waves from a binary neutron star inspiral[J]. Physical Review Letters, 2017, 119(16):

161101. DOI: 10.1103/PhysRevLett.119.161101.

- Abbott B P, Abbott R, Abbott T D, *et al.* Properties of the binary neutron star merger GW170817[J]. Physical Review X, 2019, 9(1): 011001. DOI: 10.1103/PhysRevX. 9.011001.
- 100 Nambu Y, Jona-Lasinio G. Dynamical model of elementary particles based on an analogy with superconductivity. I[J]. Physical Review, 1961, 122(1): 345 - 358. DOI: 10.1103/physrev.122.345.
- 101 Nambu Y, Jona-Lasinio G. Dynamical model of elementary particles based on an analogy with superconductivity. II[J]. Physical Review, 1961, 124(1): 246 - 254. DOI: 10.1103/physrev.124.246.
- 102 Klevansky S P. The Nambu-Jona-Lasinio model of quantum chromodynamics[J]. Reviews of Modern Physics, 1992, 64(3): 649 - 708. DOI: 10.1103/ revmodphys.64.649.
- Hatsuda T, Kunihiro T. QCD phenomenology based on a chiral effective Lagrangian[J]. Physics Reports, 1994, 247: 221 367. DOI: 10.1016/0370-1573(94)90022-1.
- Hatsuda T, Kunihiro T. Soft modes associated with chiral symmetry breaking: the use of a QCD-motivated effective interaction[J]. Progress of Theoretical Physics, 1985, 74 (4): 765 781. DOI: 10.1143/PTP.74.765.
- 105 Wang F, Cao Y K, Zong H S. Novel self-consistent mean field approximation and its application in strong interaction phase transitions[J]. Chinese Physics C, 2019, 43(8): 084102. DOI: 10.1088/1674-1137/43/8/084102.
- 106 Roberts C D, Schmidt S M. Dyson-Schwinger equations: Density, temperature and continuum strong QCD[J].
 Progress in Particle and Nuclear Physics, 2000, 45: S1 -S103. DOI: 10.1016/S0146-6410(00)90011-5.
- 107 Fischer C S. QCD at finite temperature and chemical potential from Dyson-Schwinger equations[J]. Progress in Particle and Nuclear Physics, 2019, 105: 1 - 60. DOI: 10.1016/j.ppnp.2019.01.002.
- 108 Maris P, Roberts C D. π and K-meson Bethe-Salpeter amplitudes[J]. Physical Review C, 1997, **56**(6): 3369 – 3383. DOI: 10.1103/physrevc.56.3369.
- 109 Maris P, Tandy P C. Bethe-Salpeter study of vector meson masses and decay constants[J]. Physical Review C, 1999, 60(5): 055214. DOI: 10.1103/physrevc.60.055214.
- Qin S X, Chang L, Chen H, et al. Phase diagram and critical end point for strongly interacting quarks[J]. Physical Review Letters, 2011, 106(17): 172301. DOI: 10.1103/PhysRevLett.106.172301.

- 111 Fischer C S, Luecker J. Propagators and phase structure of N_i=2 and N_i=2+1 QCD[J]. Physics Letters B, 2013, 718 (3): 1036 1043. DOI: 10.1016/j.physletb.2012.11.054.
- 112 Fischer C S, Luecker J, Welzbacher C A. Phase structure of three and four flavor QCD[J]. Physical Review D, 2014, 90(3): 034022. DOI: 10.1103/physrevd.90.034022.
- 113 Shi C, Du Y L, Xu S S, *et al.* Continuum study of the QCD phase diagram through an OPE-modified gluon propagator[J]. Physical Review D, 2016, **93**(3): 036006. DOI: 10.1103/physrevd.93.036006.
- 114 Wang B, Wang Y L, Cui Z F, *et al.* Effect of the chiral chemical potential on the position of the critical endpoint [J]. Physical Review D, 2015, **91**(3): 034017. DOI: 10.1103/physrevd.91.034017.
- Fischer C S, Grüter B, Alkofer R. Solving coupled Dyson-Schwinger equations on a compact manifold[J]. Annals of Physics, 2006, 321(8): 1918 1938. DOI: 10.1016/j.aop. 2005.11.007.
- 116 Fan W K, Luo X F, Zong H S. Mapping the QCD phase diagram with susceptibilities of conserved charges within Nambu-Jona-Lasinio model[J]. International Journal of Modern Physics A, 2017, **32**(11): 1750061. DOI: 10.1142/ s0217751x17500610.
- 117 Fan W K, Luo X F, Zong H S. Probing the QCD phase structure with higher order baryon number susceptibilities within the NJL model[J]. Chinese Physics C, 2019, 43(3): 033103. DOI: 10.1088/1674-1137/43/3/033103.
- 118 Fan W K, Luo X F, Zong H S. Second to tenth order susceptibilities of conserved charges within a modified Nambu-Jona-Lasinio model[J]. Chinese Physics C, 2019, 43(5): 054109. DOI: 10.1088/1674-1137/43/5/054109.
- Shao G Y, Tang Z D, Gao X Y, *et al.* Baryon number fluctuations and the phase structure in the PNJL model[J]. The European Physical Journal C, 2018, 78(2): 138. DOI: 10.1140/epjc/s10052-018-5636-0.
- 120 Ferreira M, Costa P, Providência C. Presence of a critical endpoint in the QCD phase diagram from the net-baryon number fluctuations[J]. Physical Review D, 2018, 98(3): 034006.
- 121 Li Z B, Xu K, Wang X Y, *et al.* The kurtosis of net baryon number fluctuations from a realistic Polyakov-Nambu-Jona-Lasinio model along the experimental freeze-out line [J]. The European Physical Journal C, 2019, **79**(3): 245. DOI: 10.1140/epjc/s10052-019-6703-x.
- 122 Isserstedt P, Buballa M, Fischer C S, et al. Baryon number fluctuations in the QCD phase diagram from

Dyson-Schwinger equations[J]. Physical Review D, 2019, **100**(7): 074011. DOI: 10.1103/physrevd.100.074011.

- 123 Zhao A M, Cui Z F, Jiang Y, et al. Nonlinear susceptibilities under the framework of Dyson-Schwinger equations[J]. Physical Review D, 2014, 90(11): 114031. DOI: 10.1103/physrevd.90.114031.
- 124 Xin X Y, Qin S X, Liu Y X. Quark number fluctuations at finite temperature and finite chemical potential via the Dyson-Schwinger equation approach[J]. Physical Review D, 2014, 90(7): 076006. DOI: 10.1103/physrevd. 90. 076006.
- 125 Fu W J, Luo X F, Pawlowski J M, et al. Hyper-order baryon number fluctuations at finite temperature and density[J]. Physical Review D, 2021, **104**(9): 094047. DOI: 10.1103/physrevd.104.094047.
- 126 Zhao A M, Luo X F, Zong H S. Baryon number fluctuations in quasi-particle model[J]. The European Physical Journal C, 2017, 77(4): 207. DOI: 10.1140/epjc/ s10052-017-4784-y.
- 127 Almási G A, Pisarski R D, Skokov V V. Volume dependence of baryon number cumulants and their ratios [J]. Physical Review D, 2017, 95(5): 056015. DOI: 10. 1103/physrevd.95.056015.
- 128 Aggarwal M M, Ahammed Z, Alakhverdyants A V, et al. Higher moments of net proton multiplicity distributions at RHIC[J]. Physical Review Letters, 2010, 105: 022302. DOI: 10.1103/PhysRevLett. 105.022302.
- 129 Adamczyk L, Adkins J K, Agakishiev G, et al. Beam energy dependence of moments of the net-charge multiplicity distributions in Au+Au collisions at RHIC[J]. Physical Review Letters, 2014, 113(9): 092301. DOI: 10.1103/PhysRevLett.113.092301.
- 130 Adam J, Adamczyk L, Adams J R, *et al.* Beam energy dependence of net-Λ fluctuations measured by the STAR experiment at RHIC[J]. Physical Review C, 2020, **102**: 024903. DOI: 10.1103/PhysRevC.102.024903.
- 131 Adamczyk L, Adams J R, Adkins J K, *et al.* Collision energy dependence of moments of net-kaon multiplicity distributions at RHIC[J]. Physics Letters B, 2018, 785: 551 - 560. DOI: 10.1016/j.physletb.2018.07.066.
- 132 Kitazawa M, Asakawa M. Revealing baryon number fluctuations from proton number fluctuations in relativistic heavy ion collisions[J]. Physical Review C, 2012, 85(2): 021901. DOI: 10.1103/physrevc.85.021901.
- 133 Kitazawa M, Asakawa M. Relation between baryon number fluctuations and experimentally observed proton

number fluctuations in relativistic heavy ion collisions[J]. Physical Review C, 2012, **86**(2): 024904. DOI: 10.1103/ physrevc.86.024904.

- Hatta Y, Stephanov M A. Proton-number fluctuation as a signal of the QCD critical end point[J]. Physical Review Letters, 2003, 91(10): 102003. DOI: 10.1103/ PhysRevLett.91.102003.
- 135 Athanasiou C, Rajagopal K, Stephanov M. Using higher moments of fluctuations and their ratios in the search for the QCD critical point[J]. Physical Review D, 2010, 82 (7): 074008. DOI: 10.1103/physrevd.82.074008.
- 136 Borsanyi S, Fodor Z, Katz S D, et al. Freeze-out parameters from electric charge and baryon number fluctuations: is there consistency? [J]. Physical Review Letters, 2014, 113(5): 052301. DOI: 10.1103/ PhysRevLett.113.052301.
- 137 Borsányi S, Fodor Z, Katz S D, et al. Freeze-out parameters: lattice meets experiment[J]. Physical Review Letters, 2013, 111(6): 062005. DOI: 10.1103/ PhysRevLett.111.062005.
- 138 Cleymans J, Oeschler H, Redlich K, et al. Status of chemical freeze-out[J]. Journal of Physics G: Nuclear and Particle Physics, 2006, **32**(12): S165 - S169. DOI: 10. 1088/0954-3899/32/12/s21.
- 139 Begun V V, Vovchenko V, Gorenstein M I. Updates to the p+p and A+A chemical freeze-out lines from the new experimental data[J]. Journal of Physics: Conference Series, 2017, 779: 012080. DOI: 10.1088/1742-6596/779/ 1/012080.
- 140 Fukushima K, Kharzeev D E, Warringa H J. Chiral magnetic effect[J]. Physical Review D, 2008, 78(7): 074033. DOI: 10.1103/physrevd.78.074033.
- 141 Fukushima K, Ruggieri M, Gatto R. Chiral magnetic effect in the Polyakov-Nambu-Jona-Lasinio model[J]. Physical Review D, 2010, 81(11): 114031. DOI: 10.1103/ physrevd.81.114031.
- 142 Chernodub M N, Nedelin A S. Phase diagram of chirally imbalanced QCD matter[J]. Physical Review D, 2011, 83 (10): 105008. DOI: 10.1103/physrevd.83.105008.
- 143 Ruggieri M. Critical end point of quantum chromodynamics detected by chirally imbalanced quark matter[J]. Physical Review D, 2011, 84(1): 014011. DOI: 10.1103/physrevd.84.014011.
- Yamamoto A. Chiral magnetic effect in lattice QCD with a chiral chemical potential[J]. Physical Review Letters, 2011, **107**(3): 031601. DOI: 10.1103/PhysRevLett. 107.

031601.

- 145 Wang B, Wang Y L, Cui Z F, *et al.* Effect of the chiral chemical potential on the position of the critical endpoint [J]. Physical Review D, 2015, **91**(3): 034017. DOI: 10.1103/physrevd.91.034017.
- 146 Xu S S, Cui Z F, Wang B, *et al.* Chiral phase transition with a chiral chemical potential in the framework of Dyson-Schwinger equations[J]. Physical Review D, 2015, 91(5): 056003. DOI: 10.1103/physrevd.91.056003.
- Shi C, He X T, Jia W B, *et al.* Chiral transition and the chiral charge density of the hot and dense QCD matter[J]. Journal of High Energy Physics, 2020, 2020(6): 122. DOI: 10.1007/JHEP06(2020)122.
- 148 Blaschke D, Burau G, Kalinovsky Y L, et al. Finite T meson correlations and quark deconfinement[J]. International Journal of Modern Physics A, 2001, 16(12): 2267 - 2291. DOI: 10.1142/s0217751x01003457.
- Maris P, Tandy P C. Bethe-Salpeter study of vector meson masses and decay constants[J]. Physical Review C, 1999, 60(5): 055214. DOI: 10.1103/physrevc.60.055214.
- 150 Shi C, Du Y L, Xu S S, *et al.* Continuum study of the QCD phase diagram through an OPE-modified gluon propagator[J]. Physical Review D, 2016, **93**(3): 036006. DOI: 10.1103/physrevd.93.036006.
- 151 Cui Z F, Cloët I C, Lu Y, *et al.* Critical end point in the presence of a chiral chemical potential[J]. Physical Review D, 2016, **94**(7): 071503. DOI: 10.1103/physrevd. 94.071503.
- 152 Yu L, Liu H, Huang M. Effect of the chiral chemical potential on the chiral phase transition in the NJL model with different regularization schemes[J]. Physical Review D, 2016, 94(1): 014026. DOI: 10.1103/physrevd. 94. 014026.
- 153 Weller R D, Romatschke P. One fluid to rule them all: viscous hydrodynamic description of event-by-event central p+p, p+Pb and Pb+Pb collisions at *s*=5.02 TeV[J]. Physics Letters B, 2017, **774**: 351 - 356. DOI: 10.1016/j. physletb.2017.09.077.
- 154 Aidala C, Akiba Y, Alfred M, et al. Creating small circular, elliptical, and triangular droplets of quark-gluon plasma[J]. Nature Physics, 2019, 15: 214 – 220. DOI: 10.1038/s41567-018-0360-0.
- 155 Shi C, Jia W B, Sun A, *et al.* Chiral crossover transition in a finite volume[J]. Chinese Physics C, 2018, **42**(2): 023101. DOI: 10.1088/1674-1137/42/2/023101.
- 156 Shi C, Xia Y H, Jia W B, et al. Chiral phase diagram of

strongly interacting matter at finite volume[J]. Science China Physics, Mechanics & Astronomy, 2018, **61**(8): 082021. DOI: 10.1007/s11433-017-9177-4.

- 157 Xu Y Z, Shi C, He X T, *et al.* Chiral crossover transition from the Dyson-Schwinger equations in a sphere[J]. Physical Review D, 2020, **102**(11): 114011. DOI: 10.1103/ physrevd.102.114011.
- 158 Bernhardt J, Fischer C S, Isserstedt P, et al. Critical endpoint of QCD in a finite volume[J]. Physical Review D, 2021, **104**(7): 074035. DOI: 10.1103/physrevd. 104. 074035.
- 159 Bernhardt J, Fischer C S, Isserstedt P. Finite-volume effects in baryon number fluctuations around the QCD critical endpoint[EB/OL]. 2022: arXiv: 2208.01981. https: //arxiv.org/abs/2208.01981.
- 160 Almási G A, Pisarski R D, Skokov V V. Volume dependence of baryon number cumulants and their ratios [J]. Physical Review D, 2017, 95(5): 056015. DOI: 10.1103/physrevd.95.056015.
- 161 Cheng P, Luo X F, Ping J L, *et al.* Finite volume effects on the quarkonium dissociation temperature in an impenetrable QGP sphere[J]. Physical Review D, 2019, 100: 014027. DOI: 10.1103/physrevd.100.014027.
- 162 Zhao Y P, Yin P L, Yu Z H, *et al.* Finite volume effects on chiral phase transition and pseudoscalar mesons properties from the Polyakov-Nambu-Jona-Lasinio model [J]. Nuclear Physics B, 2020, **952**: 114919. DOI: 10.1016/j.nuclphysb.2020.114919.
- 163 Duffy G, Ottewill A C. Rotating quantum thermal distribution[J]. Physical Review D, 2003, 67(4): 044002. DOI: 10.1103/physrevd.67.044002.
- 164 Ambruş V E, Winstanley E. Rotating fermions inside a cylindrical boundary[J]. Physical Review D, 2016, 93 (10): 104014. DOI: 10.1103/physrevd.93.104014.
- 165 Zhang Z, Shi C, Luo X F, *et al.* Rotating fermions inside a spherical boundary[J]. Physical Review D, 2020, **102**(6): 065002. DOI: 10.1103/physrevd.102.065002.
- 166 Fulling S A. Nonuniqueness of canonical field quantization in Riemannian space-time[J]. Physical Review D, 1973, 7(10): 2850 - 2862. DOI: 10.1103/ physrevd.7.2850.
- 167 Unruh W G. Notes on black-hole evaporation[J]. Physical Review D, 1976, 14(4): 870 - 892. DOI: 10.1103/ physrevd.14.870.
- 168 Cook G B, Shapiro S L, Teukolsky S A. Rapidly rotating neutron stars in general relativity: realistic equations of

state[J]. The Astrophysical Journal Letters, 1994, **424**: 823. DOI: 10.1086/173934.

- 169 Skokov V V, Illarionov A Y, Toneev V D. Estimate of the magnetic field strength in heavy-ion collisions[J]. International Journal of Modern Physics A, 2009, 24(31): 5925 5932. DOI: 10.1142/s0217751x09047570.
- 170 Voronyuk V, Toneev V D, Cassing W, et al. Electromagnetic field evolution in relativistic heavy-ion collisions[J]. Physical Review C, 2011, 83(5): 054911.
 DOI: 10.1103/physrevc.83.054911.
- 171 Deng W T, Huang X G. Event-by-event generation of electromagnetic fields in heavy-ion collisions[J]. Physical Review C, 2012, 85(4): 044907. DOI: 10.1103/physrevc. 85.044907.
- 172 Duncan R C, Thompson C. Formation of very strongly magnetized neutron stars - Implications for gamma-ray bursts[J]. The Astrophysical Journal Letters, 1992, **392**: L9. DOI: 10.1086/186413.
- 173 Cao G Q. Recent progresses on QCD phases in a strong magnetic field: views from Nambu-Jona-Lasinio model [J]. The European Physical Journal A, 2021, 57(9): 264. DOI: 10.1140/epja/s10050-021-00570-0.
- McInnes B. Inverse magnetic/shear catalysis[J]. Nuclear Physics B, 2016, 906: 40 - 59. DOI: 10.1016/j.nuclphysb. 2016.02.027.
- 175 Fortin M, Providência C, Raduta A R, *et al.* Neutron star radii and crusts: uncertainties and unified equations of state[J]. Physical Review C, 2016, 94(3): 035804. DOI: 10.1103/physrevc.94.035804.
- Akmal A, Pandharipande V R, Ravenhall D G. Equation of state of nucleon matter and neutron star structure[J]. Physical Review C, 1998, 58(3): 1804 1828. DOI: 10.1103/physrevc.58.1804.
- 177 Douchin F, Haensel P. A unified equation of state of dense matter and neutron star structure[J]. Astronomy & Astrophysics, 2001, 380(1): 151 167. DOI: 10.1051/0004-6361:20011402.
- 178 Masuda K, Hatsuda T, Takatsuka T. Hadron-quark crossover and massive hybrid stars[J]. Progress of Theoretical and Experimental Physics, 2013, 2013(7): 073D01. DOI: 10.1093/ptep/ptt045.
- 179 Li C M, Yan Y, Geng J J, *et al.* Constraints on the hybrid equation of state with a crossover hadron-quark phase transition in the light of GW170817[J]. Physical Review D, 2018, **98**(8): 083013. DOI: 10.1103/physrevd. 98. 083013.

- 180 Itoh N. Hydrostatic equilibrium of hypothetical quark stars
 [J]. Progress of Theoretical Physics, 1970, 44(1): 291 292. DOI: 10.1143/PTP.44.291.
- 181 Terazawa H. Super-hypernuclei in the quark-shell model[J]. Journal of the Physical Society of Japan, 1979, 58 (3555): 1989.
- 182 Bodmer A R. Collapsed nuclei[J]. Physical Review D, 1971, 4(6): 1601 - 1606. DOI: 10.1103/physrevd.4.1601.
- 183 Witten E. Cosmic separation of phases[J]. Physical Review D, 1984, 30(2): 272 - 285. DOI: 10.1103/ physrevd.30.272.
- 184 Li B L, Cui Z F, Yu Z H, *et al.* Structures of the strange quark stars within a quasiparticle model[J]. Physical Review D, 2019, **99**(4): 043001. DOI: 10.1103/physrevd. 99.043001.
- 185 Wang Q Y, Zhao T, Zong H S. On the stability of twoflavor and three-flavor quark matter in quark stars within the framework of NJL model[J]. Modern Physics Letters A, 2020, **35**(39): 2050321. DOI: 10.1142/ s0217732320503216.
- 186 Li B L, Yan Y, Ping J L. Strange quark mass dependence of strange quark star properties[J]. The European Physical Journal C, 2021, 81(10): 921. DOI: 10.1140/epjc/s10052-021-09657-w.
- 187 Li B L, Yan Y, Ping J L. Tidal deformabilities and radii of strange quark stars[J]. Physical Review D, 2021, **104**(4): 043002. DOI: 10.1103/physrevd.104.043002.
- 188 Li B L, Yan Y, Ping J L. Hadron-quark crossover and hybrid stars with quark core[J]. Journal of Physics G: Nuclear and Particle Physics, 2022, 49(4): 045201. DOI: 10.1088/1361-6471/ac4ea1.
- 189 Xu S S. Phase structures of neutral dense quark matter and application to strange stars[J]. Chinese Physics C, 2022, 46(1): 014105. DOI: 10.1088/1674-1137/ac2f95.
- Li B L, Yan Y, Kang G Z, *et al.* Properties of hybrid stars with hadron-quark crossover[J]. Modern Physics Letters A, 2022, 37(12): 2250074. DOI: 10.1142/S0217732322500742.

- Holdom B, Ren J, Zhang C. Quark matter may not be strange[J]. Physical Review Letters, 2018, 120(22): 222001. DOI: 10.1103/PhysRevLett.120.222001.
- 192 Yang L K, Luo X F, Zong H S. QCD phase diagram in chiral imbalance with self-consistent mean field approximation[J]. Physical Review D, 2019, 100(9): 094012. DOI: 10.1103/physrevd.100.094012.
- Yu Z X, Zhao T, Zong H S. Self-consistent mean field approximation and application in three-flavor NJL model [J]. Chinese Physics C, 2020, 44(7): 074104. DOI: 10. 1088/1674-1137/44/7/074104.
- 194 Su L Q, Shi C, Huang Y F, *et al.* Hybrid stars can be selfbound[J]. Physical Review D, 2021, **103**(9): 094037. DOI: 10.1103/physrevd.103.094037.
- 195 Wang Q W, Shi C, Zong H S. Nonstrange quark stars from an NJL model with proper-time regularization[J]. Physical Review D, 2019, **100**(12): 123003. DOI: 10.1103/physrevd.100.123003.
- 196 Zhao T, Zheng W, Wang F, *et al.* Do current astronomical observations exclude the existence of nonstrange quark stars?[J]. Physical Review D, 2019, **100**(4): 043018. DOI: 10.1103/physrevd.100.043018.
- 197 Capano C D, Tews I, Brown S M, et al. Stringent constraints on neutron-star radii from multimessenger observations and nuclear theory[J]. Nature Astronomy, 2020, 4(6): 625 - 632. DOI: 10.1038/s41550-020-1014-6.
- Yuan W L, Li A, Miao Z Q, et al. Interacting ud and uds quark matter at finite densities and quark stars[J].
 Physical Review D, 2022, 105(12): 123004. DOI: 10. 1103/physrevd.105.123004.
- 199 Adamczyk L, Aboona B E, Adam J, et al. Beam energy dependence of fifth and sixth-order net-proton number fluctuations in Au+Au collisions at RHIC[EB/OL]. 2022: arXiv: 2207.09837. https://arxiv.org/abs/2207.09837.
- 200 Geng J J, Li B, Huang Y F. Repeating fast radio bursts from collapses of the crust of a strange star[J]. The Innovation, 2021, 2(4): 100152. DOI: 10.1016/j. xinn. 2021.100152.